Proteina S

Protein S physiology

Da dottvolpicelli

La proteina S è una glicoproteina vitaminica K-dipendente. Risulta sintetizzata nel fegato e all’interno delle cellule epiteliali. Nel circolo ematico, la proteina S è presente sia in forma libera (40% circa), che legata (60%):

  • La forma libera della proteina S è la variante ATTIVA e serve come cofattore per la proteina C;
  • La forma legata della proteina S è la variante INATTIVA; si trova nel plasma in forma associata con la proteina legante il C4b (molecola trasportatrice o carrier di C4b, componente regolatrice del sistema del complemento).

I valori fisiologici della proteina S nel sangue sono compresi  tra 15 e 30 mg/L, ma l’esame fornisce un valore espresso in percentuale sul valore di riferimento

  • Uomini: 65-160%
  • Donne:
    • con meno di 50 anni: 50-160%
    • con 50 anni o più: 65-160%

La proteina S non libera risulta legata a C4bBP, una proteina del sistema del complemento e solo la proteina S libera ha un ruolo di cofattore della  PCA.

La proteina S volge un ruolo fondamentale nella coagulazione del sangue. Agisce in qualità di cofattore per la proteina C attivata, un anticoagulante endogeno che inibisce i fattori della coagulazione Va e VIIIa.

Un deficit di questo parametro può derivare da insufficienza epatica, trattamento anticoagulante, carenza di vitamina K, assunzione di estroprogestinici o alti livelli di estradiolo per l’induzione dell’ovulazione.

Bassi valori di proteina S espongono il paziente al rischio di trombosi  e tromboembolismo venoso profondo ed embolia polmonare.

In genere un valore elevato di proteina S libera non ha alcun significato clinico patologico.

References:

  1. Stamler JS, Lamas S, Fang FC. Nitrosylation. the prototypic redox-based signaling mechanism. Cell. 2001;106:675–683. 
  2. 2. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 2005;6:150–166. 
  3. 3. Benhar M, Forrester MT, Hess DT, Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science. 2008;320:1050–1054. 
  4. 4. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 2001;3:193–197. 
  5. 5. Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD, Snyder SH. GAPDH mediates nitrosylation of nuclear proteins. Nat. Cell Biol. 2010;12:1094–1100.
  6. 6. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Pevsner J, Wagner DD, Lowenstein CJ. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell. 2003;115:139–150. 
  7. 7. Mitchell DA, Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat. Chem. Biol. 2005;1:154–158.
  8. 8. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 2009;324:102–105. [PMC free article] [PubMed[]
  9. 9. Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B. S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 2001;154:1111–1116.
  10. 10. Doulias PT, Greene JL, Greco TM, Tenopoulou M, Seeholzer SH, Dunbrack RL, Ischiropoulos H. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc. Natl. Acad. Sci. U. S. A. 2010;107:16958–16963. 
  11. 11. Simon DI, Mullins ME, Jia L, Gaston B, Singel DJ, Stamler JS. Polynitrosylated proteins: characterization, bioactivity, and functional consequences. Proc. Natl. Acad. Sci. U. S. A. 1996;93:4736–4741.
  12. 12. Schild L, Dombrowski F, Lendeckel U, Schulz C, Gardemann A, Keilhoff G. Impairment of endothelial nitric oxide synthase causes abnormal fat and glycogen deposition in liver. Biochim. Biophys. Acta. 2008;1782:180–187. 
  13. 13. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, Natarajan M, Abboud-Werner SL. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab. Invest. 2008;88:515–528. 
  14. 14. Brix AE, Elgavish A, Nagy TR, Gower BA, Rhead WJ, Wood PA. Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse. Mol. Genet. Metab. 2002;75:219–226. 
  15. 15. de Oliveira CP, de Lima VM, Simplicio FI, Soriano FG, de Mello ES, de Souza HP, Alves VA, Laurindo FR, Carrilho FJ, de Oliveira MG. Prevention and reversion of nonalcoholic steatohepatitis in OB/OB mice by S-nitroso-N-acetylcysteine treatment. J. Am. Coll. Nutr. 2008;27:299–305.
  16. 16. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, Sawa A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 2005;7:665–674. 
  17. 17. Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science. 2004;304:1328–1331.
  18. 18. Koshland DE. The application and usefulness of the ratio k(cat)/K(M). Bioorg. Chem. 2002;30:211–213. [PubMed[]
  19. 19. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994;356:295–298. 
  20. 20. Kobzik L, Stringer B, Balligand JL, Reid MB, Stamler JS. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem. Biophys. Res. Commun. 1995;211:375–381.
  21. 21. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO. Calorie Restriction Promotes Mitochondrial Biogenesis by Inducing the Expression of eNOS. Science. 2005;310:314–317. 
  22. 22. Prime TA, Blaikie FH, Evans C, Nadtochiy SM, James AM, Dahm CC, Vitturi DA, Patel RP, Hiley CR, Abakumova I, Requejo R, Chouchani ET, Hurd TR, Garvey JF, Taylor CT, Brookes PS, Smith RA, Murphy MP. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc. Natl. Acad. Sci. U. S. A. 2009;106:10764–10769. 
  23. 23. Lima B, Lam GK, Xie L, Diesen DL, Villamizar N, Nienaber J, Messina E, Bowles D, Kontos CD, Hare JM, Stamler JS, Rockman HA. Endogenous S-nitrosothiols protect against myocardial injury. Proc. Natl. Acad. Sci. U. S. A. 2009;106:6297–6302. [PMC free article] [PubMed[]
  24. 24. Kohr MJ, Aponte A, Sun J, Gucek M, Steenbergen C, Murphy E. Measurement of s-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication. Circ. Res. 2012;111:1308–1312. [PMC free article] [PubMed[]
  25. 25. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332:1519–1523. [PMC free article] [PubMed[]
  26. 26. Aoyama T, Souri M, Ushikubo S, Kamijo T, Yamaguchi S, Kelley RI, Rhead WJ, Uetake K, Tanaka K, Hashimoto T. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J. Clin. Invest. 1995;95:2465–2473. [PMC free article] [PubMed[]
  27. 27. Djordjevic S, Dong Y, Paschke R, Frerman FE, Strauss AW, Kim JJ. Identification of the Catalytic Base in Long Chain Acyl-CoA Dehydrogenase. Biochemistry. 1994;33:4258–4264. [PubMed[]
  28. 28. Strauss AW, Powell KC, Hale DE, Anderson MM, Ahuja A, Brackett JC, Sims HF. Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:10496–10500. 
  29. 29. Kabuyama Y, Suzuki T, Nakazawa N, Yamaki J, Homma MK, Homma Y. Dysregulation of very long chain acyl-CoA dehydrogenase coupled with lipid peroxidation. Am. J. Physiol. Cell. Physiol. 2010;298:C107–113. [
  30. 30. Keene SD, Greco TM, Parastatidis I, Lee SH, Hughes EG, Balice-Gordon RJ, Speicher DW, Ischiropoulos H. Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome. Proteomics. 2009;9:768–782. [
  31. 31. Lehman TC, Hale DE, Bhala A, Thorpe C. An acyl-coenzyme a dehydrogenase assay utilizing the ferricenium ion. Anal. Biochem. 1990;186:280–284. 
  32. 32. Izai K, Uchida Y, Orii T, Yamamoto S, Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J. Biol. Chem. 1992;267:1027–1033. [
  33. 33. Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509.
  34. 34. Suhre K, Sanejouand YH. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 2004;32:W610–614. 
  35. 35. Yang Z, Wang Z,E, Doulias PT, Wei W, Ischiropoulos H, Locksley RM, Liu L. Lymphocyte development requires S-nitrosoglutathione reductase. J. Immunol. 2010;185:6664–6669. 

Potrebbe piacerti anche

Lascia il tuo commento

Inserisci la somma corretta Limite di tempo superato. Si prega di completare nuovamente il captcha.

Il Fertilitycenter.it è un sito informativo al fianco delle coppie per sostenerle ed informarle nel desiderio più grande, quello di avere un figlio.

ULTIMI ARTICOLI

fertilitycenter.it © 2023 All right reserved.

Questo sito Web utilizza i cookie per migliorare la tua esperienza. Supponiamo che tu sia d'accordo con questo, ma puoi annullare l'iscrizione se lo desideri. Accetto Leggi

-
00:00
00:00
Update Required Flash plugin
-
00:00
00:00