Andrologia, Spermiogramma

Oligoastenospermia

Oligospermia è definita una concentrazione di spermatozoi <15.000.000/ml sec. il World Health Organization (WHO laboratory manual for the examination and processing of human semen) nel 2010 (1). Raramente questa patologia si presenta in forma isolata, comunemente è associata con diminuzione della motilità (oligo-astenospermia) e con forme anormali di spermatozoi (oligo-asteno-teratospermia). La motilità degli spz è valutata poco dopo la liquefazione dell’eiaculato (60 minuti circa dall’eiaculazione), quindi dopo 120 e 240 minuti. In condizioni normali gli spz dotati di motilità rettilinea di tipo “a” e “b” rappresentano almeno il 50% con almeno il 25% dotati di motilità rettilinea progressiva (tipo “a”) (1,2). 

 

Il numero medio ideale di spermatozoi totali nel liquido seminale dovrebbe essere 40.000.000-80.000.000 con variazioni fisiologiche del 10-30% fra un esame e l’altro. Nel 2010 la WHO espresse delle linee guida per la valutazione della concentrazione degli spermatozoi.

  • spz/ml  <156 : oligospermia lieve
  • spz/ml  <106: oligospermia media
  • spz/ml <5.000.000:  oligospermia severa
  • pochi e rari spermatozoi: criptospermia
  • spz/ml >250×106 polispermia 

Non esiste un’esatta correlazione fra la concentrazione degli spermatozoi e l’outcome gravidico.

——————————————————————————–

Etiologia: la spermatogenesi dipende dall’integrità dell’asse ipotalamo-ipofisi-testicolare che può essere alterata congenitamente o secondariamente a malattie e traumi di diversa natura. 

  • Idiopatica: rappresenta la maggior parte dei casi; malgrado le indagini condotte non è possibile individuare elementi o condizioni che indichino le ragioni dell’infertilità (3)
  • Patologie ipotalamo-ipofisarie: Deficit isolato idiopatico di gonadotropine, S. di Kallman, S. di Prader-Willi, S. di Sheehan.  La S. di Kallman è una patologia X-linked recessiva, determinata da una mancata migrazione dei neuroni Gn-RH secernenti e dei neuroni olfattori alla 10settimana di vita embrionale; clinicamente i pazienti presentano anosmia, ipoacusia. età ossea e pubertà ritardata, frequente il criptorchidismo, labiopalatoschisi e agenesia dentaria; dati laboratorio: alterazioni del gene KAL-1 e KAL-2 allocato nel cromosoma Xp22-23, deficit di sintesi e/o release di Gn-RH, bassi livelli di LH, FSH, testosterone. Il gene KAL-1 codifica l’anosmina che costituisce uno scaffold per la migrazione dei neuroni olfattori e dei neuroni secernenti Gn-RH. S. di Prader-Willi: microdelezione del cromosoma 15 di origine paterna nella regione 15q11-q13, iperfagia, obesità, ipogonadismo ipogonadotropo (4-6).
  • Danni testicolari secondari (infezioni, traumi testicolari, radioterapia, chemio, sostanze tossiche, ROS), si evidenziano alti livelli plasmatici di FSH ma spesso l’LH è normale perchè le cellule di Leydig sono più resistenti agli insulti esterni. Le più frequenti infezioni dell’apparato genitale sono quelle da parotite epidemica, da clamidia e da gonococco.  L’oligoastenospermia da radiazione è da ricondurre probabilmente a diminuzione dell’irrorazione arteriosa locale.
  • Radicali liberi dell’ossigeno (ROS):  i ROS sono metaboliti dell’ossigeno dosabili con metodi di chemiolumonescenza. I livelli di ROS nel liquido seminale sono più elevati nel 40% dei pazienti infertili e nel 97% dei pazienti con lesioni del midollo spinale (6-8) e nei paz affetti da flogosi delle vie genitali. I ROS comprendono:
  1. gli anioni superossido,
  2. il perossido di idrogeno,
  3. i radicali idrossilici,
  4. i radicali idroperossilici
  5. l’ossido nitrico (NO).

Nel liquido seminale  la produzione di ROS da parte degli spermatozoi e dei leucociti  si è dimostrato essere un evento fisiologico necessario per la maturazione, capacitazione e reazione acrosomiale degli spermatozoi (9) Nel plasma seminale normale c’è un equilibrio tra la produzione di ROS e antiossidanti.  I principali antiossidanti sono:

  • superossido dismutasi
  • catalasi
  • glutatione perossidasi
  • retinolo,
  • α-tocoferolo (Vit E)
  • β-carotene
  • ascorbato,
  • tioli proteici
  • urato
  • glutatione

La predominanza di ROS rispetto agli antiossidanti nel liquido seminale è associata a danni alla membrana plasmatica, frammentazione del DNA degli spermatozoi, apoptosi spermatozoaria (8,10) e sterilità maschile idiopatica (10). Attualmente sono in commercio i tests per lo studio dello stress ossidativo spermatico.

 

  • Problemi immunologici: anticorpi antispermatozoi (ASA) nel liquido seminale e nel siero; Gli spermatozoi sono cellule aploidi cioè con un numero di cromosomi dimezzato rispetto a tutte le altre cellule del corpo. Questa caratteristica li rende “estranei” all’organismo e come tali capaci di indurre una risposta immune quando per un qualche entrano in contatto con il sangue. Ciò avviene quando si creano lesioni della barriera  emato-testicolare conseguenti a stati flogistici, traumi ed infezioni dei testicoli e delle vie genitali.     Se gli ASA si legano alla coda, avremo spermatozoi soprattutto immobili ed agglutinati mentre la presenza di ASA sulla testa degli spz provoca soprattutto danneggiamenti acrosomiali e del DNA.   In ogni caso la presenza di ASA riduce mobilità e capacità fecondante degli spz. (10-22).
  • Abuso di alcool: inibisce la sintesi epatica di testosterone
  • Obesità: le cellule adipose secernono leptina che accelera la pulsatilità di rilascio di Gn-RH da parte dei nuclei ipotalamici ventromediale, dell’eminenza mediale e arcuato mediante l’attivazione del neuropeptide Y e del neurotrasmettitore NO. Le cellule interstiziali testicolari possiedono recettori specifici della leptina (Ob-Rs, Obesity Receptors). La leptina esercita sulle gonadi un  effetto inibitorio principalmente contrastando l’Insulin-like Growth factor-I (IGF-I), il Transforming Growth factor b (TGF-b),    l’insulina ed i glicocorticoidi mediante antagonismo recettoriale. Perciò alti livelli di leptina possono sopprimere la sintesi steroidea e la gametogenesi. Ma anche bassi livelli di leptina possono creare gli stessi problemi per la gametogenesi e la sintesi steroidea (23-25).

ALTERAZIONI GENETICHE –  interessano il 15%  dei pazienti infertili  (26-29). 

  • Microdelezioni Y (Yq11): normali i livelli sierici di FSH, LH, testosterone, cariotipo normale. La trasmissione di microdelezioni del cromosoma Y può avere  sul feto di sesso maschile conseguenze cliniche severe quali lo sviluppo di ambiguità sessuale e/o stimmati turneriane.
  • S. di Klinefelter (47,XXY): non-disgiunzione alla IIdivisione meiotica; testicoli piccoli e duri, fibrosi tubuli seminiferi, ipertrofia cellule di Leydig, scarso sviluppo dei caratteri sessuali secondari, Q.I. ridotto, aumento della statura.
  • S. di Jacobs: mancata disgiunzione durante la IIa divisione meiotica nella gametogenesi, oligo-azospermia, testosterone basso o normale, disturbi dell’eiaculazione, lieve ritardo mentale, aggressività, altezza superiore alla media, denti grandi.
  • Fibrosi cistica (mutazione del gene CFTR): La proteina CFTR modula il trasporto di acqua e ioni attraverso la memvrana citoplasmatica dei tubuli seminiferi. Azoospermia o grave oligoastenospermia nel 75% dei casi. CBAVD (Congenital Bilateral Absence Vas Deferens): comporta azzospermia nel 95% dei casi e gravissima olgoastenospermia nel restante 5%, gravi alterazioni morfologiche degli spz, frequentemente si associano microdelezioni del cromosoma Y e della fibrosi cistica.
  • Sindrome dell’X fragile (Xq27.3): alterazione del gene FMR1 localizzato nel cromosoma X (Xq27.3), oligo/azospermia, macrorchidismo, ritardo mentale.
  • S. di Noonan: cariotipo 46,XY, alterazione del gene PTPN11 del cromosoma 12, frequentemente si associano criptorchidismo, ritardo mentale, cardiomiopatie, stimmati turneriane. 
  • S. di Prader-Willi: microdelezione del cromosoma 15 di origine paterna nella regione 15q11-q13, iperfagia, obesità, ipogonadismo ipogonadotropo;
  • Sindrome di Kartagener: modificazione dei tubuli di dineina della pars intermedia degli spermatozoi (e nelle ciglia vibratili dell’apparato respiratorio)

 

  • Varicocele - (dal latino “varix”, varice e dal greco “κελε”, gonfiore) è una dilatazione della vena testicolare e del plesso venoso omonimo correlata ad un aumento della pressione venosa di 19 mm Hg circa rispetto ai maschi in assenza di varicocele (91,92).  Può essere classificato in tre gradi: primo grado: dilatazione del plesso venoso spermatico evidenziato solo con la palpazione durante la manovra di Valsalva. Secondo grado: la dilatazione si evidenzia già con la semplice posizione eretta senza necessità di ricorrere alla manovra di Valsalva. Terzo grado: la dilatazione è visibile alla semplice ispezione visiva anche se il paziente è posto in posizione supina. La dilatazione diagnosticata con USG, angiografia o altri mezzi di indagine ma non palpabile è definita come varicocele subclinico (67,68,). Il varicocele è presente nel 15% (range 2-22%) della popolazione adulta e nel 30% (range 19-41%) dei maschi infertili o con parametri seminali alterati (67-71). L’etiologia del varicocele non è ancora completamente chiarita. Secondo una prima teoria, il varicocele è il risultato di differenze anatomiche tra vena spermatica destra e sinistra. Infatti, la vena spermatica interna destra sfocia direttamente nella vena cava inferiore ad angolo acuto, mentre la sinistra defluisce  nella vena renale sinistra ad angolo retto. Si ritiene che questa disparità porta ad un aumento della pressione idrostatica della vena spermatica di sinistra, aumento pressorio che viene successivamente trasferito al plesso venoso spermatico provocandone la dilatazione (89). Una seconda teoria etiologica si basa sul deficit delle valvole funzionali delle vv. spermatiche e conseguente reflusso venoso. Infine, una terza teoria suggerisce che vi è una parziale ostruzione della vena spermatica sinistra a causa della compressione della vena renale sinistra tra l’aorta e l’arteria mesenterica superiore (“fenomeno dello schiaccianoci” o “the nutcracker phenomenon”) (89).  Si crea un aumento di pressione, dilatazione e inversione di flusso nella vena testicolare e nel plesso testicolare per assenza o incompetenza delle valvole lungo l’intera vena gonadica (81,82). La diagnosi è conseguita mediante l’ispezione della zona scrotale e la scansione ecografica color doppler (72-75). Il varicocele generalmente è asintomatico e solo nel 2-10% dei casi si associa a dolore o senso di peso e sensazione di fastidio scrotale. E’ più frequente a sinistra (80-90%), raramente a destra; ancora più raro è il varicocele bilaterale; quest’ultima evenienza risulta statisticamente in aumento a causa delle migliorate tecniche di diagnosi (76-80).  Il varicocele riduce la fertilità e la spermatogenesi. Infatti esso è presente nel 20% dei pazienti con oligoastenospermia.D’altra parte il 75% dei pazienti con varicocele risulta fertile e la varicocelectomia spesso non migliora i parametri seminali o l’outcome gravidico della coppia (96-98). Sono state descritti (83-90,102-105) diversi meccanismi attraverso i quali il  varicocele esercita un’azione negativa sulla funzionalità testicolare:

Incremento della temperatura scrotale e conseguente aumento dei radicali liberi dell’ossigeno
Reflusso di steroidi di provenienza surrenalica (es. catecolamine) o di tossine renali attraverso la vena renale: Queste sostanze provocano vascocostrizione arteriolare e conseguente ipossia e iperproduzione di ROS con  danni all’epitelio germinativo (87-89).
Stasi ematica testicolare con fenomeni degenerativi del DNA spermatico anossia-dipendenti e accentuata apoptosi delle cellule germinali (99)
Declino funzionalità cellule di Leydyg e diminuzione della secrezione di testosterone. Uno studio multicentrico della World Health Organization (WHO) ha dimostrato che gli uomini >30 anni di età con varicocele hanno livelli di testosterone significativamente più bassi rispetto agli uomini con varicocele ma di età <30 anni; tali variazioni così vistose fra i due gruppi di età non si apprezzano negli uomini in assenza di varicocele (93).  Si è ipotizzato che l’abbassamento dei valori di T fosse dovuto ai danni provocati dal varicocele sulle cellule di Leydig; tuttavia questo studio non è stato in grado di escludere un preesistente  deficit secretivo testicolare.  D’altra parte è stato dimostrato che la sola presenza di varicocele non induce sempre ipotestosteronemia e ipogoandismo (94).
Aumento dello stress ossidativo: da aumentata presenza di ROS e/o diminuito potere antiossidante (95)

 

  • Febbre, Infezioni e flogosi delle vie genitali (31-37)
  • Iperprolattinemia - può essere idiopatica ma quasi sempre è dovuta a prolattinoma ipofisario. I valori sierici normali di HPRL sono 14 ± 2.2 ng/ml mentre nei paz. con oligoastenospermia si riscontrano valori di >30  ng/ml (range 30-120 ng/ml).  Variazioni estemporanee possono essere dovute a stress o traumi. L’iperprolattinemia induce diminuzione dei pulses di Gn-RH da parte dell’ipotalamo e, conseguentemente, iposecrezione gonadotropinica da parte dell’adenoipofisi. In questi paz si riscontrano alti livelli di estradiolo e normali o bassi livelli di testosterone (38-43).
  • Alterazioni delle tight junctions dell’epididimo: Un epitelio è classificato come “tight” o  ”leaky” in base alla capacità delle tight di prevenire o meno il passaggio di liquidi o soluti. Le tight junctions testicolari sono fondamentali per conservare  il fisiologico ambiente epididimario dove si completa la maturazione degli spermatozoi, impedire variazioni di pH e le aggressioni immunologiche dell’epitelio germinativo (47). Le tight junctions permettono la normale secrezione di proteine e ioni coinvolti nella maturazione degli spz. e nella codificazione delle β-defensine (48-67).  
  • Ipotiroidismo - è associato con la sterilità nel 0,5% degli uomini; è facilmente diagnosticabile e curabile.
  • Criptorchidismo: è presente in 3% dei neonati di sesso maschile a termine. Ad un anno di età, solo l’1% dei ragazzi ha un testicolo ritenuto. Se lasciato in sede eteropica, undescended, il testicolo va incontro a difetti di maturazione e infertilità oltre che a deviazione neoplastica. 

 Tab. 1 – Etiologia dell’oligospermia: 

idiopatica
Patologie ipotalamo-ipofisarie: deficit isolato idiopatico di gonadotropine, S. di Kallman, S. di Prader-Willi, S. di Sheehan.
disfunzione gonadica primaria: Klinefelter, Kartagener, Jacobs, fibrosi cistica, CBAVD, alterazioni delle tight junctions
disfunzione gonadica secondaria: chemioterapia, radioterapia, traumi, torsioni del testicolo, microlitiasi testicolare
disordini genetici (15%): alterazioni cromosoma Y: microdelezioni, rings, inversioni, isocromosomi, traslocazioni; S. Klinefelter (47,XXY); S. di Jacobs (47,XYY), trisomia 21; Fibrosi cistica (mutazione del gene CFTR); CBAVD; S. di Noonan; S. di Prader-Willi, S. di Kartagener
deficit enzimatici della steroidogenesi
iperprolattinemia: presente nel 2% dei pazienti con oligoastenospermia 
alterazione del rapporto E2/Testosterone
ipotiroidismo
agenti patogeni: alcool, cocaina, marjiuana,  fumo, febbre, insonnia, stress
obesità
esposizione a fonti di calore: frequenti bagni termali, saune, personal computer
farmaci: Salazopirina, antibiotici, ormoni steroidei
proteina Catsper: assenza della proteina CatSper
infezione del tratto genitale (parotite epidemica, malattie sessualmente trasmesse, TBC)
anticorpi antispermatozoi (ASA)
Eccesso o difetto di radicali liberi dell’ossigeno (ROS)
Varicocele di grado III-IV°
intervallo molto lungo o troppo corto dalla precedente eiaculazione,

 

DIAGNOSTICA:

Anamnesi

Esami generali di laboratorio: 

  • FSH (v.n. 1-10 mUI/ml): nei paz. con varicocele si osservano valori leggermente elevati di FSH (110,101)
  • LH
  • Prolattina
  • Estradiolo (v.n. <65 pg/ml)
  • Testosterone (v.n. 3-10 ng/ml)
  • DHT
  • SHBG
  • Cortisolemia
  • Prolattinemia
  • T3, T4, TSH
  • USG transrettale
  • glicemia, PSA, emocromo, PT, PTT, AT III, indici di funzionalità epatica, renale e tiroidea,  esame urine, 

Esame obiettivo generale: struttura corporea e massa muscolare, distribuzione adiposa e pilifera, esplorazione rettale (tono e contrattilità dello sfintere), palpazione della prostata (volume e consistenza), pressione arteriosa e frequenza cardiaca, polsi periferici (femorali, poplitei, malleolari), cicatrici chirurgiche.

Esame obiettivo genitale: dimensioni ed aspetto del pene, dimensioni dei testicoli (v.n. >7 ml), alterazioni cutanee, secrezioni uretrali, riflesso bulbo-cavernoso, testicoli ed epididimi, deferenti, varicocele.

SPERMIOGRAMMA: per valutare numero, motilità e forma degli spermatozoi, esame biochimico e ricerca di fenomeni flogistici e disordini immunitari. 

  • Raccolta campione - Il campione iniziale deve essere raccolto tramite masturbazione dopo un periodo di astinenza sessuale di un tempo minimo di 2 giorni ad un massimo di 7  giorni. Rispettare il periodo di astinenza sessuale permette di paragonare i dati seminali a valori standard di normalità. Inoltre, un’astinenza troppo prolungata provoca accumulo di spermatozoi con possibile riduzione della motilità e alterazione della morfologia, mentre un’astinenza troppo breve può causare la riduzione del volume dell’eiaculato e del numero degli spermatozoi. La raccolta tramite coito interrotto non è una modalità idonea in quanto si può verificare la perdita della prima frazione dell’eiaculato, che di solito contiene la più alta concentrazione di spermatozoi e può comportare una contaminazione del liquido seminale con secrezioni vaginali che possono interferire sulla motilità degli spermatozoi. Essendo il campione molto sensibile a sbalzi di temperatura, è importante una volta compiuta la raccolta evitare escursioni termiche durante il trasporto del campione in laboratorio. Condizioni febbrili di origine virale o batterica, terapie con farmaci, l’assunzione di anabolizzanti per uso “sportivo” e molti altri eventi patologici o terapeutici, possono interferire sulla qualità del campione seminale.
  • La fluidificazione del liquido seminale segue l’iniziale coagulazione. Se dopo 60 minuti la fluidificazione non è completa, si parla di fluidificazione ritardata, quadro compatibile con disturbi prostatici. La misurazione viene effettuata facendo percolare il liquido lungo le pareti della provetta osservando la qualità del liquido contro una sorgente luminosa.
  • Concentrazione degli spermatozoi: il numero degli spermatozoi è valutato al M.O. utilizzando la camera di Makler (Sefi Medical Instrument). In caso di criptozoospermia però, è necessario ricorrere alla camera di Neubauer che al centro della griglia contiene 25 quadrati grandi ognuno dei quali contiene 16 quadrati piccoli.  Per campioni che contengono meno di 10 spermatozoi per quadrato grande, devono essere contati gli spermatozoi dell’intera griglia di 25 quadrati grandi, per campioni contenenti da 10 a 40 spermatozoi per quadrato grande è necessario esaminare dieci quadrati grandi, mentre per campioni con più di 40 spermatozoi per quadrato grande dovrebbero essere contati gli spermatozoi di 5 quadrati grandi. In condizioni normali la concentrazione di spermatozoi deve essere <15.000.000/ml sec. il World Health Organization (WHO laboratory manual for the examination and processing of human semen) nel 2010 (1). 
  • Viscosità -  La misurazione della viscosità avviene facendo gocciolare il liquido da una pipetta, osservando come le gocce dovrebbero susseguirsi in maniera ritmica una dopo l’altra. Una diminuzione della viscosità può associarsi a scarsa componente cellulare spermatica mentre l’aumento della viscosità visibile con la formazione di filamenti può derivare da uno stato di flogosi delle vie spermatiche.
  • volume dell’eiaculato: 2-6 ml rappresenta il volume normale; volume >6 ml è rappresentato come iperposia e si ritrova spesso in condizioni di flogosi delle vie seminali; un volume seminale <2 ml siamo è definito come ipoposia e si riscontra in caso di agenesia dei dotti deferenti, ostruzioni distali, eiaculazione retrograda parziale, ipogonadismo e problemi immunologici
  • morfologia -  La morfologia spermatozoaria è strettamente correlata al tasso di concepimento spontaneo e al tasso di fertilizzazione in vitro. In condizioni normali la percentuale di spz normali deve essere >14% (WHO 2010), altrimenti si tratta di teratozoospermia. Tra le alterazioni morfologiche desta particolare attenzione la presenza di spz a testa rotonda (globozoospermia) a causa  dell’assenza della membrana acrosomiale e dell’acrosina, entrambe fondamentali per la penetrazione dello spz. nell’ovocita (5).
  • esami biochimici - la concentrazione di fruttosio è il miglior marker della funzionalità delle vescicole seminali nei pazienti infertili. Fruttosio e carnitina (rispettivamente utili come sorgente e produzione di energia)  sono importanti nel metabolismo e nella motilità degli spermatozoi;  Lo zinco ha probabilmente una funzione battericida diretta e indiretta, e stabilizza la cromatina degli spermatozoi. Le secrezioni delle vescicole seminali sono importanti per motilità spermatica, la stabilità della cromatina nucleare e la soppressione dell’attività immunitaria nel tratto riproduttivo femminile. Modesti livelli di ac. citrico e fruttosio si osservano  nel liquido seminale di pz. oligoastenospermici (43,44).

 

Biochimica liquido seminale
parametro sede di produzione valori normali
Fruttosio  vescichette seminali 200-600 mg/dl
fosfatasi acida  prostata 70-700 UI/L
acido citrico prostata 200-900 mg/dl
carnitina epididimo 0.2-0.4 μmol/ml
zinco  prostata 2-40 mg/ml

 

  • spermiocultura - . La presenza di leucociti con valori >1×106/ml  è sempre indice di infiammazione/infezione delle vie seminali (epididimo, prostata e vescicole seminali). La flogosi delle vie seminali provoca un’aumentata concentrazione di ROS (radicali liberi dell’ossigeno), un’alterata reazione acrosomiale, un’alterata adesione e penetrazione nella zona pellucida e danneggiamento del DNA (frammentazione) degli spermatozoi. Le infezioni delle vie genitali costituiscono, quindi, una delle cause più frequenti di riduzione della capacità riproduttiva maschile, soprattutto in quelle forme definite “silenti”, asintomatiche, non curate per l’assenza di segni clinici soggettivi; l’intervallo tra il contagio sessuale e la comparsa di infertilità è spesso di molti anni (32-36).  Prima di raccogliere lo sperma, il paziente deve urinare, dopodiché deve lavarsi le mani ed il pene con sapone, e sciacquare via ogni traccia di sapone ed asciugarsi con un asciugamano pulito. Il contenitore per il liquido seminale deve essere sterile, ed il tempo intercorrente tra raccolta e l’inizio dell’analisi al laboratorio di microbiologia non deve superare le tre ore. I principali agenti patogeni sono:
    1. Neisseria gonorrhoeae: Dopo un breve periodo di incubazione, 4-5 giorni, più dell’80% dei maschi presenta i sintomi dell’infezione primaria. Le uretriti gonococciche acute sono caratterizzate da abbondante essudato cremoso giallastro: nelle forme croniche l’essudato è meno tipico ed abbondante.
    2. Chlamydia trachomatis: è causa di malattie gravi sia per gli scarsi sintomi, sia per le cicatrizzazioni che provoca e che comportano importanti sequele specie per la fertilità. Essa è responsabile di oltre il 50% delle uretriti non gonococciche e di gran parte di quelle post-gonococciche. L’uretrite da Chlamydia può complicarsi con orchi-epididimite, prostatite, vescicolite, tutte causa di anomalie nella produzione, nella funzione e nel trasporto degli spermatozoi, che possono anche comportarsi come veicolo dell’infezione. L’esame viene eseguito su tampone uretrale.
    3. MycoplasmiNell’uomo possono determinare uretriti, prostatiti e prostato-vescicoliti subacute, spesso accompagnate da emospermia; sono stati anche descritti casi di epididimiti e balaniti. Tra gli agenti infettivi i Mycoplasmi sono al primo posto come causa di infertilità maschile.
    4. Trichomonas vaginalis Colonizza l’uretra, la prostata, le vescicole seminali, l’epididimo ed i testicoli. Spesso si è portatori asintomatici del parassita, potendo manifestare una leggera uretrite che normalmente non induce il paziente ad un controllo medico.

Ancora non è stata dimostrata l’efficacia del trattamento antibiotico nel migliorare la possibilità di concepimento, ma un’infezione seminale può nel tempo creare ostruzione delle vie genitali maschili e femminili, predisporre all’ aborto e - comportare disturbi minzionali nella seconda e terza età.

  • Citofluorimetria: Per valutare i parametri seminali abbiamo a disposizione le camere di conta e il microscopio; la concentrazione viene valutata utilizzando la camera di Makler o di Neubauer, con le quali noi contiamo solo una piccola parte delle cellule presenti nell’eiaculato ed estrapoliamo pertanto la concentrazione sulla base di una notevole approssimazione; la mobilità, risente fortemente della soggettività dell’operatore che deve discriminare in maniera molto approssimativa i differenti tipi di motilità nemaspermica e la percentuale degli spermatozoi con le diverse tipologie di mobilità; un dato meno soggettivo è rappresentato dalla valutazione della morfologia, ma possiamo contare massimo 100-200 spermatozoi per vetrino, che dal punto di vista statistico sono un numero scarsamente rappresentativo se rapportato alle centinaia di milioni che possono essere presenti nell’eiaculato. Un aiuto in questo senso è venuto verso la fine degli anni ’70 dalla citofluorimetria, inizialmente utilizzata quasi esclusivamente per indagini immuno-onco-ematologiche e successivamente anche per lo studio degli spermatozoi.  La citofluorimetria permette di analizzare campioni cellulari statisticamente accettabili, riducendo in questa maniera il fenomeno della variazione. Il principio su cui si basa la citofluorimetria può essere schematizzato nel seguente modo: una sospensione cellulare viene fatta aspirare dallo strumento, queste cellule si disporranno in un flusso unicellulare che viene intercettato da un raggio laser convogliato da una lente, questo raggio subirà un destino diverso sulla base delle caratteristiche cellulari andando quindi ad essere intercettato da filtri e fotomoltiplicatori che in ultima analisi trasformeranno il segnale elettrico in diagrammi computerizzati.

 

TEST IMMUNOLOGICI: ricerca di anticorpi sulla superficie degli spz. e/o nel liquido seminale. Le IgG hanno effetti citotossici mentre le IgA hanno effetti agglutinanti. Gli anticorpi antispermatozoi sono secreti dalle ghiandole sessuali accessorie e si ritrovano quindi sulla superficie degli spermatozoi e nel plasma seminale, raramente nel siero.  

  • Immunobead test: si utilizzano immunoglobuline antiumane di coniglio.  Gli spz vengono osservati al microscopio a contrasto di fase  400x. Le immunoglobuline aderiscono alla superficie. Si valutano contemporaneamente la presenza di IgG e IgA  (v.n. <50% degli spz)
  • MAR test (Mixed Antiglobulin Reaction test) IgG e IgA: Si mettono a contatto gli spermatozoi, separati dal liquido seminale e ripetutamente lavati mediante centrifugazioni e quindi risospesi in 10 ml di soluzione tampone, e 10 ml di particelle di lattice ricoperte di immunoglobuline IgG o IgA. Dopo 10 minuti di incubazione, in presenza di anticorpi sulla superficie degli spz, le particelle di lattice aderiranno alla superficie degli spz. che progressivamente diminuiranno di mobilità e si aggregheranno. In condizioni di normalità, gli spz con anticorpi sono  <10%.  Un MAR positivo con titolazione >50% (sterilità immunitaria) impone il trattamento della coppia con la tecnica ICSI.
  • Swelling test: il test si basa sulla semipermeabilità della membrana cellulare integra.
  • Valutazione della reazione acrosomiale indotta: a seguito dell’interazione fra l’acrosoma e la zona pellucida, si assiste alla reazione acrosomiale che inizia con l’ingresso di ioni calcio nel citoplasma e l’alcalinizzazione di quest’ultimo. Entrambi questi fenomeni possono essere artificialmente indotti mediante lo ionoforodel calcio A23187.  Nel rimodellamento citoplasmatico gli istoni sono sostituiti dalla protamina (6).
  • Test di penetrazione nella zona pellucida: si mettono a contatto gli spz con la zona pellucida, tagliata mediante microdissettori, di ovociti non fertilizzabili conservati in soluzione salina concentrata per diversi mesi derivati da biopsie ovariche, cadaveri o FIV. Si contano gli spz legati alla zona pellucida. 
  • Sperm mucus penetration test
  • Post-coital test
  • Test all’arancio di acridina: in condizioni normali >70% degli spermatozoi appariranno di colore verde mentre gli spz con DNA denaturato si coloreranno in verde.
  • Citologia spermatica mediante agoaspirato testicolare: permette di studiare l’epitelio germinativo del testicolo e le fasi del processo di gametogenesi.  L’agoaspirazione viene eseguita con un sottile ago, in ambulatorio, previa una anestesia da contatto (spray) con minimo discomfort del paziente. I quadri che emergono sono: normale, sindrome a cellule di Sertoli, blocco maturativo spermatogoniale/spermatocitico, ipospermatogenesi. 
  • Valutazione delle aneuploidie spermatiche tramite citofluorimetria di flusso
  • Protamina: il deficit di protamina è correlata con l’attività alla CMA3 e costituisce un parametro di outcome negativo (fallimento della fertilizzazione) più affidabile dell’attivita della CMA3 e degli altri parametri seminali (4-7).
  • Cromomicina A3: correlato positivamente con le percentuali di fertilizzazione (4).
  • FISH (Sperm Fluorescence In Situ Hybridizations): permette di evidenziare aneuploidie e diploidie spermatiche che sono molto  frequenti nei pazienti con oligoastenospermia grave (12).
  • TUNEL test su liquido seminale per la ricerca di frammentazioni del DNA
  • Ricerca di microdelezioni del cromosoma Y (su sangue periferico)
  • Cariotipo (su sangue periferico)
  • Ricerca e dosaggio della proteina CatSper: Se la «corrente» è accesa lo spermatozoo muove la coda e può fertilizzare una cellula uovo. Se invece «manca la corrente» la cellula seminale maschile non è in grado di fare il suo lavoro . Questo si sospettava da tempo, ma ora , per la prima volta, l’attività elettrica degli spermatozoi è stata «catturata», si apre la possibilità di accendere o spegnere la corrente che attraversa la membrana di un singolo spermatozoo per mettere a punto un nuovo contraccettivo maschile. L’annuncio della scoperta è stato dato da una ricerca pubblicata sulla rivista Nature. Lo studio è stato condotto negli Stati Uniti presso il Children’s Hospital di Boston e nell’istituto Howard Hughes. Riuscire a controllare la corrente che attraversa la cellule germinale maschile significa essere in grado di ridurre l’attività della proteina chiamata CatSper, scoperta nel 2001 nello spesso ospedale di Boston da David Clapham. Finora si sapeva che questa proteina è attiva soltanto nella coda degli spermatozoi maturi ed è stato dimostrato in esperimenti su animali che quando la proteina è assente c’è completa infertilità. I loro spermatozoi non riescono infatti ad agitare la coda in modo abbastanza energico e non hanno perciò la forza necessaria per penetrare attraverso la membrana che avvolge l’ovocita. Misurando direttamente l’attività elettrica, Yuriy Kirichok e Betsy Navarro hanno dimostrato che CatSper è uno dei principali canali che permettono agli ioni di calcio di entrare nella coda dello spermatozoo. Il flusso del calcio, misurabile come una corrente elettrica, «accende» le proteine-motore della coda e dà allo spermatozoo la spinta necessaria a raggiungere l’ovocita. Quindi i ricercatori si sono accorti che la corrente si rilevava soltanto negli spermatozoi di topi normali, ma non in quelli di topi che non hanno la proteina CatSper. «Se si trova un elemento capace di bloccare la corrente, questo potrebbe essere utilizzato come contraccettivo maschile» ha detto Navarro.

FRAMMENTAZIONE DNA SPERMATICO

  1.  sperm chromatin dispersion (SCD)
  2. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)

TUNEL test - E’ un esame specialistico che sta assumendo sempre più interesse e sempre più spesso viene richiesto per lo studio dell’infertilità maschile. La frammentazione del DNA spermatico può attualmente fornire indicazioni importanti nella valutazione per un eventuale intervento correttivo di varicocele anche ad età avanzata, ma fornisce indicazioni correlate anche ai tassi di successo delle tecniche di PMA di I-II° livello.
Il DNA spermatico rappresenta il patrimonio genetico paterno insito nella testa dello spermatozoo, patrimonio che deve essere trasportato integro fin nell’ovocita per fondersi col DNA materno. 
Eventuali difetti di costituzione delle catene del DNA, prodottesi già durante la meiosi spermatica oppure la rottura di uno o di entrambi i  filamenti del DNA durante la migrazione intrauterina e fino al III° distale tubarico. Spermatozoi con DNA frammentato non può fertilizzare o, se riesce a farlo, dà luogo ad embrioni non vitali, che attecchiscono difficilmente o danno luogo ad aborti ricorrenti precoci. Normalmente spermatozoi con DNA frammentato sono presenti nel seme sia di soggetti fertili che infertili, ma esiste un valore soglia (cut-off) di danno (25%)  oltre il quale la fertilizzazione e il successivo sviluppo dell’embrione vengono compromessi. Coppie nelle quali il seme del partner esibisce una percentuale di spermatozoi con DNA frammentato superiore al valore soglia, hanno una ridotta probabilità di concepire naturalmente. Le frammentazioni del DNA spermatico compromettono non solo le fecondazioni spontanee ma anche quelle assistite e sono correlate negativamente con la frequenza di gravidanza in FIVET e in ICSI. Le cause principali di frammentazione del DNA sono rappresentate da stress ossidativo rappresentato da elevate e prolungate esposizioni ai radicali liberi dell’ossigeno non adeguatamente neutralizzati dagli antiossidanti. Lo stress ossidativo associato a uso di droghe, il fumo di sigaretta, l’esposizione a inquinanti ambientali e occupazionali, l’età avanzata, varicocele, elevata temperatura testicolare (computer portatili, vasche idromassaggio), e la cattiva alimentazione.

Il trattamento con antiossidanti e con gonadotropine può ridurre il danno del DNA spermatico. La capacitazione con gradienti di densità è il metodo migliore per incrementare il tasso di fecondazione da parte di permatozoi con alte percentuali di frammentazione di DNA (91-99).  

TERAPIA DELL’OLIGOASTENOSPERMIA:
  1. medica
  2. chirurgica
  3. tecniche PMA

Terapia medica:  è la terapia di prima scelta e va sempre ricercata prima di passare alle tecniche PMA che bypassano il problema olioastenospermia ma sono gravate da alti costi e distress. Lo scopo della terapia farmacologica è  quello di migliorare la concentrazione degli spermatozoi e il potenziale di fertilità.

  • Gn-RH pulsatile
  • Antiestrogeni: La terapia con antiestrogeni (Clomifene e tamoxifene) è controindicata ed inutile in pazienti ipergonadotropi. E’ gratificata da una percentuale del 30% di gravidanze pur subendo tutt’ora di numerose critiche e perplessità. Gli antiestrogeni competono con gli estrogeni a livello recettoriale mimando una situazione di ipoestrogenismo che stimola  la secrezione ipotalamo-ipofisaria per meccanismo di feed-back positivo.  Secondo molti AA. la combinazione di tamoxifene + testosterone (Nolvadex® cpr 10-20 mg a giorni alterni e metil-testosterone 3 mg/die per 3-4 mesi) sembra avere un’efficacia superiore al clomifene (Clomid® cpr 50 mg: 1/2 cpr a giorni alterni per 3-4 mesi). Alcuni AA. ipotizzano un’azione diretta del tamoxifene a livello testicolare.

 

  • Meropur fl (FSH + LH): una fiala a giorni alterni im/sc; la somministrazione di gonadotropine è inutile in caso di ipergonadotropinemia.
  • Gonasi (LH) 2.000 UI fl: una fiala insieme a Meropur 
  • Antiprolattinemici: Cabergolina (Dostinex® cpr 0.5 mg) ½ cpr ogni tre giorni o bromocriptina (Parlodel® cpr 2.5 mg) 2.5 mg/die per 6 mesi, normalizzano i valori sierici della prolattina ma non hanno alcuna efficacia positiva sui parametri seminali. 
  • Corticosteroidi: la terapia con corticosteroidi per ridurre la concentrazione di anticorpi antisperma (ASA) nel siero e nel liquido seminale è tutt’ora soggetta a numerose contestazioni e controversie. 5-15 mg/die di Prednisolone (Urbason® cpr 4 mg) oppure metilprednisone (Deltacortene® cpr 5 mg, 25 mg) è somministrato per 3-4 mesi per ridurre la concentrazione di ASA. siccome i risultati sono parziali e non duraturi, in caso di inseminazione artificiale si somministra ulteriormente al partner maschile 20 mg/die di prednisone  dal 1° giorno al 10° giorno del ciclo e poi 5 mg/die fino al giorno dell’ovulazione della partner. La riduzione degli ASA è sempre parziale, limitata nel tempo e gravata da molti effetti collaterali; in caso di insuccesso, il ricorso alle tecniche di fecondazione in vitro riesce a superare il problema.  
  • Inibitori dell’aromatasi (letrozolo, anastrozolo) in caso di alterato rapporto estradiolo/testosterone a favore del primo
  • Estrogeni e testosterone in combinazione a basse dosi (etinil estradiolo 4.0 mcg e metiltestosterone 3.6 mg/die per os per 90-120 giorni): migliorano numero e motilità degli spz compresi i casi di severa oligoastenospermia.  Questo tipo di terapia è l’unico capace di migliorare l’oligoastenospermia in pazienti con FSH elevato. Etinilestradiolo cpr 1 mcg, 10 mcg
  • Testosterone rebound therapy: alti dosi di testosterone azzerano l’attività dell’asse ipotalamo-ipofisi-gonadica con effetto rebound al termine della terapia e aumentata sensibilità recettoriale alle gonadotropine.
  • Testosterone undecanoato in associazione con tamoxifene citrato: 4 cicli di CC 25 mg/die e 5 giorni di intervallo; 
  • Carnitine: Questi farmaci svolgono un importante ruolo antiossidante nel metabolismo cellulare con particolare tropismo per il testicolo e l’epididimo e migliorano pertanto la motilità e la funzione fecondante degli spermatozoi. 
  • Vitamina E, Vitamina C, anti-ossidanti, carnitina, acetil-L-carnitina, zinco, dieta iperproteica.
  • Tribulus terrestris, Ginseng, DHEA, Vit B6
  • Proxeed NF bustine (L-Carnitina + Acetil-L-carnitina + Fruttosio + ac. Citrico + Coenzima Q10  + vit B12)
Preparazione officinalis multivitaminica in capsule o bustine (1×2/die per 90 gg)
  1. Tribulus terrestris 300 mg
  1. Ginseng 400 mg
  1. Vitamina B6 100 mg
  1. DHEA 100 mg
  1. Lattulosio 100 mg

Life style: controllo del peso, evitare fumo, alcoolici e droghe, eccessi dietetici, vita sedentaria, abiti attillati, luoghi eccessivamente caldi e affollati. Lo stress sia fisico che psichico esercita un ruolo importante sull’infertilità; allo stress è associato un innalzamento dei livelli di endorfina responsabile dell’incremento dei livelli di prolattina e della riduzione dei livelli di LH a cui si associa ipogonadismo e dei livelli di FSH a cui si associano disturbi della gametogenesi. Ma le terapie con antidepressivi deprimono la steroidogenesi e la gametogenesi. Altri farmaci con effetti simili sono gli steroidi anabolizzanti, i farmaci contro l’artrite reumatoide,  

L’alcool ha un’azione diretta sull’ipotalamo e sull’ipofisi determinando una riduzione dei livelli di LH; è inoltre responsabile dell’atrofia dei tubuli seminiferi, dell’oligozoospermia e dell’elevato numero di spermatozoi con atipie morfologiche. L’aumento della concentrazione di estrogeni serici come effetto dell’aumentata aromatizzazione epatica del testosterone e dell’aumentata conversione dei precursori degli ormoni androgenici surrenalici in estrone è associata a condizione di ipogonadismo. La sintesi di questi precursori è stimolata tanto dall’etanolo che dal prodotto del metabolismo epatico dell’etanolo ovvero l’acetaldeide.

 TERAPIA  CHIRURGICA:

Le cause maschili di sterilità che vanno affrontate chirurgicamente sono;

a) Orchidopessi: purtroppo la ritenzione addominale di un testicolo o di entrambi, se non viene corretta in giovanissima età, porta alla degenerazione del tessuto responsabile della produzione spermatica e spesso alla formazione di autoanticorpi antispermatozoi. L’intervento di orchidopessi deve essere effettuato appena possibile per limitare i danni testicolari.

b) Varicocelectomia:  quasi tutti gli AA. sono concordi nel consigliare l’intervento chirurgico quando un varicocele di III-IV° è associato ad alterazione della quantità e/o qualità degli spermatozoi o a dolore testicolare, riduzione del volume testicolare sinistro >2-3 ml rispetto al controlaterale. In passato numerosi Autori riportarono significativi miglioramenti dei parametri seminali dopo varicocelectomia e soprattutto la concentrazione degli spz seminali e l’indice di frammentazione del DNA spermatico. Dopo i primi entusiasmi però comparvero i primi lavori che misero in discussione l’efficacia dell’intervento chirurgico soprattutto dopo l’introduzione delle procedure di PMA (75,97). 

Attualmente esistono due opzioni di trattamento per i soggetti affetti da varicocele: la legatura subinguinale del plesso venoso testicolare con tecnica  microchirurgica con l’utilizzo di luope di iingrandimento  in anestesia locale e la scleroembolizzazione percutanea sec. Tauber. Si tratta di interventi eseguiti in regime di Day Hospital (110-120).  

L’approccio inguinale comporta un’incisione di 3-5 cm sul canale inguinale, l’apertura dell’aponeurosi obliqua esterna e l’isolamento del funicolo spermatico. Il funicolo è sollevato le vene spermatiche esterne che accompagnano il funicolo spermatico sono identificate e legate. I vasi deferenti, vasa vasorum, l’arteria testicolare e i linfatici sono conservati. Dopo l’intervento, il deflusso venoso del testicolo avverrà attraverso il sistema venoso della pudenda interna (121-130). 

Con l’approccio subinguinale occorre legare un numero tre volte maggiore di vene spermatiche da legare, l’identificazione dell’arteria testicolare è meno semplice a causa della compressione da parte del bordo dell’anello inguinale esterno.

c) Le cisti dell’epididimo: anche quando sono piuttosto piccole, possono essere responsabili di oligo-azoospermia e devono essere asportate chirurgicamente per il sospetto di deviazione neoplastica.

TECNICHE PMA: Per l’IVF standard occorrono ≥2.000.000 spz mobili/eiaculato altrimenti si deve ricorrere a procedure di microiniezione (ICSI). I risultati dipendono dalla qualità del seme e in particolare dalla morfologia e motilità più che dal numero degli spermatozoi. Per quanto riguarda la morfologia Van Hoorhis afferma che una percentuale di spz con acrosoma intatto <40% ha un PR nullo.

 In conclusione, anche se le nuove tecnologie hanno rivoluzionato il trattamento delle coppie sterili, dobbiamo ancora cercare di trovare la causa di infertilità nel maschio. Oligoastenospermia può essere trattata e migliorata in molti casi, ed il metodo di trattamento dipende dall’eziologia. La terapia non specifica ha la capacità potenziale di migliorare la fertilità degli spermatozoi in alcuni uomini con oligospermia idiopatica. Le tecniche PMA restano l’unica terapia a disposizione per quei pazienti che non hanno risposto alla terapia o per le coppie che preferiscono questo tipo di terapia.

References:

  1. Cooper TG, Noonan E, von Eckardstein S, et al. (2010). “World Health Organization reference values for human semen characteristics”. Hum. Reprod. Update. 16 (3): 231–45.
  2. Trevor G Cooper, CH Yeung: Asian J Androl  1999 Jun; 1: 29-36
  3. Cavallini G (2006). “Male idiopathic oligoasthenoteratozoospermia”. Asian J Androl8 (2): 143–57.
  4. Dubin L., Amelar R.D.: Etiologic factors in 1294 consecutive cases of male infertility. Fertil Steril, 22:469–81, 1971.
  5. Dohle GR, Halley DJ, Van Hemel JO, et al. Genetic risk factors in infertile men with severe oligozoospermia and azoospermia. Hum Reprod 2002;17:13-6.
  6. Foresta C et al: Guidelines for the appropriate use of genetic tests in infertile couples. Eur J Human genetics 2002;10:303-312
  7. Kao SH et al: “Increase of oxidative stress in human sperm with lower motility”. Fertil Steril 2008;89,5:1183-1190.
  8. de Lamirande E, Gagnon C: “Human sperm hyperactivation and capacitation as parts of an oxidative  process”. Free Radic Biol Med 1993;14:255-265.
  9. Padron OF et al: “Seminal reactive oxygen species, sperm motilità and morphology in men with spinal cord iniury”. Fertil Steril 1997;67:1115-1120.
  10. Yu WH, Walczewska A, Karanth S, McCann SM: “Nitric oxide mediates leptin-induced luteinizing-hormone-releasing hormone (LH-RH) and LH-RH and leptin-induced LH release from the pituitary gland”. Endocrinology 1997;138:5055-8.
  11. BANDOH R., YAMANO S., KAMADA M., DAITOH T., AONO T.: Effect of sperm-immobilizing antibodies on the acrosome reaction of human spermatozoa. Fertil Steril, 57:387–92, 1992.
  12. CHECK J.H., ADELSON H.G., BOLLENDORF A.: Effect of antisperm antibodies on computerized semen analysis. Arch Androl, 27:61–3, 1991.
  13. MATHUR S., BARBER M.,CARLTONM., ZIEGLER J., WILLIAMSON H.O.: Motion characteristics of spermatozoa from men with cytotoxic sperm antibodies. Am J Reprod, Immunol Microbiol, 12:87–9, 1986.
  14. FANN C.H., LEE C.Y.G.: Monoclonal antibodies affecting sperm-zona binding and/or zona-induced acrosome reaction. J Reprod Immunol, 21:175– 87, 1992.
  15. KREMER J., JAGER S.: The significance of antisperm antibodies for sperm and cervical mucus interaction. Hum Reprod, 7:781– 4, 1992.
  16. CLARKE G.N.: Immunoglobulin class and regional specificity of antispermatozoal autoantibodies blocking cervical mucus penetration by human spermatozoa. Am J Reprod Immunol Microbiol, 16:135– 8, 1988.
  17. DIMITROV D.G., URBANEK V., ZVERINA J., MADAR J., NOUZA K., KINSKY R.: Correlation of asthenozoospermia with increased antisperm cell-mediated immunity in men from infertile couples. J Reprod Immunol, 27:3–12, 1994.
  18. STEEN Y., FORSSMAN L., LONNERSTEDT E., JONASSON K., WASSEN A.C., LYCKE E.: Anti-sperm IgA antibodies against the equatorial segment of the human spermatozoon are associated with impaired sperm penetration and subfertility. Int J Fertil, 39:52–6, 1994.
  19. MENGE A.C., BEITNER O.: Interrelationships among semen characteristics, antisperm antibodies, and cervical mucus penetration assays in infertile human couples. Fertil Steril, 51:486 –92, 1989.
  20. Cui D, Han G, Shang Y, Liu C, Xia L, Li L, Yi S. Antisperm antibodies in infertile men and their effect on semen parameters: a systematic review and meta-analysis.  Clin Chim Acta. 2015 Apr 15; 444:29-36. Epub 2015 Feb 7.
  21. Tsuki S., Noda Y., Yano J., Fukuda A., Mori T.: Inhibition of sperm penetration through human zona pellucida by antisperm antibodies. Fertil Steril, 46:92–6, 1986.
  22. EGGERT-KRUSE W., HOFSAB A., HAURY E., TILGEN W., GERHARD I., RUNNEBAUM B.: Relationship between local anti-sperm antibodies and spermmucus interaction in vitro and in vivo. Hum Reprod, 6:267–76, 1991.
  23. Sermondade, N.; Faure, C.; Fezeu, L.; et al. (2012). ”BMI in relation to sperm count: An updated systematic review and collaborative meta-analysis”. Human Reproduction Update19 (3): 221–231.
  24. Moschos S, Chan JL, Mantzoros S: “Leptin and reproduction: a review”. Fertil Steril 2002;77,3:433-444.
  25. Luukkaa V, Pesonen U, Huhtaniemi I, Lehtonen A, Tilvis R, Tuomilehto J et al: “Inverse correlation between serum testosterone and leptine in men”. J Clin Endocrinol Metab 1998;83:3243-46.
  26. Patsalis PCSismani CQuintana-Murci LTaleb-Bekkouche FKrausz CMcElreavey KEffects of transmission of Y chromosome AZFc deletions. Lancet. 2002 Oct 19;360(9341):1222-4.
  27. Liu YF, Ou JP, Zhou CQ, Wang Q, Wang ZL. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. [Screening for the microdeletions of azoospermia factor on the Y chromosome in male infertile patients from Guangzhou]. 2007 Oct; 24(5):564-6. 
  28. Wang WP, Cui YX. Zhonghua [Clinical significance and relevant laboratory techniques of detecting azoospermia factors of the Y chromosome]. Nan Ke Xue. 2007 Dec; 13(12):1117-20. 
  29. Dada R, Gupta NP, Kucheria K. Cell Biochem Biophys. 2006; 44(1):171-7. Cytogenetic and molecular analysis of male infertility: Y chromosome deletion during nonobstructive azoospermia and severe oligozoospermia.
  30. Moro E, Marin P, Rossi A, Garolla A, Ferlin A. Y chromosome microdeletions in infertile men with varicocele. Mol Cell Endocrinol 2000;161:67-71.
  31. EGGERT-KRUSE W., BUHLINGER-GOPFARTH N., ROHR G., PROBST S., AUFENANGER J., NAHER H., et al.: Antibodies to Chlamydia trachomatis in semen and relationship with parameters of male fertility. Hum Reprod, 11:1408 –17, 1996.
  32. WITKIN S.S.,KLIGMANI., BONGIOVANNI A.M.: Relationship between asymptomatic male genital tract exposure to Chlamydia trachomatis and an autoimmune response to spermatozoa. Hum Reprod, 10: 2952–5, 1995.
  33. KORTEBANI G., GONZALES G.F., BARRERA C., MAZZOLLI A.B.: Leukocyte populations in semen and male accessory gland function: relationship with antisperm antibodies and seminal quality. Andrologia, 24:197–204, 1992.
  34. WOLFF H., POLITCH J.A., MARTINEZ A., HAIMOVICI F., HILL J.A., ANDERSON D.J.: Leukocytospermia is associated with poor semen quality. Fertil Steril, 53:528 –36, 1990.
  35. Menzies, F. M.; Shepherd, M. C.; Nibbs, R. J.; Nelson, S. M. (2010). “The role of mast cells and their mediators in reproduction, pregnancy and labour”. Human Reproduction Update17 (3): 383–396.
  36. Jung A, Schuppe HC, Schill WB. Fever as etiology of temporary infertility in the man. Hautarzt 2001;52:1090-3.
  37. Merino GCarranza-Lira SMartinez-Chéquer JCBarahona EMorán CBermúdez  JA Hyperprolactinemia in men with asthenozoospermia, oligozoospermia, or azoospermia. Arch. Androl. 1997 May-Jun;38(3):201-6.
  38. Nishimura K, Matsumiya K, Tsuboniwa N, Yamanaka M, Koga M, Miura H, Tsujimura A, Uchida K, Kondoh N, Kitamura M, et al. Bromocriptine for infertile males with mild hyperprolactinemia: hormonal and spermatogenic effects. Arch Androl. 1999 Nov-Dec; 43(3):207-13. 
  39. Gonzales GF, Garcia-Hjarles M, Velasquez G. Hyperprolactinaemia and hyperserotoninaemia: their relationship to seminal quality. Andrologia. 1992 Mar-Apr; 24(2):95-100. 
  40. Soler Fernández JM, Caravaca Magariños F, Domínguez Bravo C, Murillo Mirat J, Aparicio Palomino A, Herrera Puerto [Correlation of serum prolactin, sperm count and motility. Prevalence of hyperprolactinemia in the infertile male].  J.Arch Esp Urol. 1990 Oct; 43(8):891-5.
  41. Merino G, Canales ES, Vadillo ML, Forsbach G, Solis J, Zárate  Abnormal prolactin levels in serum and seminal plasma in infertile men.  A.Arch Androl. 1980 Jun; 4(4):353-5.
  42. Gonzales GFGarcia-Hjarles MVelazquez GCoyotupa JSeminal prolactin and its relationship to sperm motility in men. Fertil Steril. 1989 Mar;51(3):498-503.
  43. Gonzales GF Function of seminal vesicles and their role on male fertility. Asian J Androl. 2001 Dec;3(4):251-8.
  44. Gonzales GF, Villena A. True corrected seminal fructose level: a better marker of the function of seminal vesicles in infertile men. Int J Androl. 2001 Oct; 24(5):255-60.
  45. Zhang XD, Jin BF.  [The role of seminal vesicles in male reproduction and sexual function].  Zhonghua Nan Ke Xue 2007 Dec; 13(12):1113-6.
  46. Evemie Dubé, Louis Hermo, Peter T. K. Chan, and Daniel G. Cyr Alterations in Gene Expression in the Caput Epididymides of Nonobstructive Azoospermic Men Biology of Reproduction 78(2):342-351. 2008
  47. Dohle, G. R., G. M. Colpi, T. B. Hargreave, G. K. Papp, A. Jungwirth, and W. Weidner. EAU guidelines on male infertility. Eur Urol 2005. 48:703–711. CrossRefPubMed
  48. Seshagiri, P. B. Molecular insights into the causes of male infertility. J Biosci 2001. 26:429–435.
  49. Egozcue, S., J. Blanco, J. M. Vendrell, F. Garcia, A. Veiga, B. Aran, P. N. Barri, F. Vidal, and J. Egozcue. Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod Update 2000. 6:93–105.
  50. Robaire, B. and L. Hermo. Efferent duct, epididymis, and vas deferens: structure, functions, and their regulation. In: Knobil, E. and J. Neill. Physiology of Reproduction. New York Raven Press. 1988. 999–1080.
  51. Hermo, L. and B. Robaire. Epididymal cell types and their functions. In: Robaire, B. and B. T. Hinton. The Epididymis: From Molecules to Clinical Practice. New York Plenum Press. 2002. 81–102.
  52. Turner, T. T. Necessity’s potion: inorganic ions and small organic molecules in the epididymal lumen. In: Robaire, B. and B. T. Hinton. The Epididymis: From Molecules to Clinical Practice. New York Plenum Press. 2002. 131–150.
  53. Dacheux, J. L., J. L. Gatti, and F. Dacheux. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc Res Tech 2003. 61:7–17. CrossRefPubMed
  54. Dacheux, J. L. and F. Dacheux. Protein secretion in the epididymis. In: Robaire, B. and B. T. Hinton. The Epididymis: From Molecules to Clinical Practice. New York Plenum Press. 2002. 151–168.
  55. Robaire, B., B. Hinton, and M-C. Orgebin-Crist. The epididymis. In: Neill, J. Knobil and Neill’s Physiology of Reproduction, 3rd ed. New York Elsevier. 2006. 1071–1148.
  56. Zhang, J. S., Q. Liu, Y. M. Li, S. H. Hall, F. S. French, and Y. L. Zhang. Genome-wide profiling of segmental-regulated transcriptomes in human epididymis using oligo microarray. Mol Cell Endocrinol 2006. 250:169–177.
  57. Dube, E., P. T. Chan, L. Hermo, and D. G. Cyr. Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis. Biol Reprod 2007. 76:1034–1044. BioOne
  58. Van Itallie, C. M. and J. M. Anderson. Claudins and epithelial paracellular transport. Annu Rev Physiol 2006. 68:403–429.
  59. Cyr, D. G., M. Gregory, E. Dube, J. Dufresne, P. T. Chan, and L. Hermo. Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood-epididymal barrier in animals and humans. Asian J Androl 2007. 9:463–475. CrossRefPubMed
  60. Patrizio, P. and W. A. Salameh. Expression of the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA in normal and pathological adult human epididymis. J Reprod Fertil Suppl 1998. 53:261–270.
  61. Da Silva, N., C. Silberstein, V. Beaulieu, C. Pietrement, A. N. Van Hoek, D. Brown, and S. Breton. Postnatal expression of aquaporins in epithelial cells of the rat epididymis. Biol Reprod 2006. 74:427–438. Link
  62. Cheung, K. H., C. T. Leung, G. P. Leung, and P. Y. Wong. Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis. Biol Reprod 2003. 68:1505–1510. BioOne
  63. Saito, K., Y. Kageyama, Y. Okada, S. Kawakami, K. Kihara, K. Ishibashi, and S. Sasaki. Localization of aquaporin-7 in human testis and ejaculated sperm: possible involvement in maintenance of sperm quality. J Urol 2004. 172:2073–2076. CrossRefPubMed
  64. Kawedia, J. D., M. L. Nieman, G. P. Boivin, J. E. Melvin, K. Kikuchi, A. R. Hand, J. N. Lorenz, and A. G. Menon. Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex. Proc Natl Acad Sci U S A 2007. 104:3621–3626.
  65. Miller, C. An overview of the potassium channel family. Genome Biol 2000; 1:REVIEWS0004.
  66. Clulow, J., R. C. Jones, L. A. Hansen, and S. Y. Man. Fluid and electrolyte reabsorption in the ductuli efferentes testis. J Reprod Fertil Suppl 1998. 53:1–14.
  67. The Male Infertility Best Practice Policy Committee of the American Urological Association and The Practice Committee of the American Society for Reproductive Medicine. Report on varicocele and infertility. Fertil Steril. 2004;82(suppl. 1):S142–S145.
  68. Hargreave TB, Liakatas J. Physical examination for varicocele. Br J Urol. 1991;67:328.
  69. Gorelick JI, Goldstein M. Loss of fertility in men with varicocele. Fertil Steril. 1993;59:613–616.
  70. Villanueva-Diaz CA, Vega-Hernandez EA, Diaz-Perez MA, et al. Sperm dysfunction in subfertile patients with varicocele and marginal semen analysis. Andrologia. 1999;31:263–267.
  71. Kantartzi P-D. [Update on the role of varicocele in male infertility]. Master degree dissertation. Thessaloniki: 2006.
  72. Jarow JP. Effects of varicocele on male fertility. Hum Reprod Update. 2001;7:59–64.
  73. Eskew LA, Watson NE, Wolfman N, et al. Ultrasonographic diagnosis of varicoceles. Fertil Steril. 1993;60:693–697.
  74. Das KM, Prasad K, Szmigielski W, Noorani N. Intratesticular varicocele: evaluation using conventional and Doppler sonography. Am J Roentgenol. 1999;173:1079–1083.
  75. Zini A. Varicocele: Evaluation and treatment. J Sex Reprod Med 2002;2:119-124.
  76.  Saypol DC, Lipschultz LI, Howards SS. Varicocele. In: Lipschultz LI, Howards SS, editors. Infertility in the male. New York: Churchill Livingstone; 1983. pp. 299–313.
  77. P D KantartziCh D GoulisG D Goulis, and I Papadimas   Male infertility and varicocele: myths and reality Hippokratia. 2007 Jul-Sep; 11(3): 99–104.
  78. Naugton DK, Nangia AK, Agarwal A. Varicocele and male infertility:Part II.Pathophysiology of varicoceles in male infertility. Hum Reprod Update. 2001;7:473–481.
  79. Fuzisawa M, Yoshida S, Kojima K, Kamidono S. Biochemical changes in testicular varicocele. Archs Androl. 1989;22:149–159.
  80. Pasqualotto FF, Lucon AM, De Goes PM, et al. Semen profile, testicular volume and hormonal levels in infertile patients with varicoceles compared with fertile men with and without varicoceles. Fertil Steril. 2005;83:74–77.
  81. Comhaire F. The pathogenesis of epididymo-testicular dysfunction in varicocele: factors other than temperature. Adv Exp Med Biol. 1991;286:281–287.
  82. Marmar JL. Varicocele and male infertility: Part II.The pathophysiology of varicoceles in the light of current molecular and genetic information. Hum Reprod Update. 2001;7:461–472.
  83. Sweeney TE, Rozum JS, Gore RW. Alteration of testicular microvascular pressures during venous pressure elevation. Am J Physiol. 1995;269:H37–45.
  84.  Goldstein M, Eid JF. Elevation of intratesticular and scrotal skin surface temperature in men with varicocele. J Urol. 1989;142:743–745.
  85. Shafik A, Bedeir GAM. Venous tension patterns in cord veins in normal and varicocele individuals. J Urol. 1980;123:383–385.
  86. Papadimas J, Mantalenakis S. Hormonal profile in infertile men. Arch Androl. 1983;11:73–80.
  87. Hendin B, Kolettis P, Sharma RK, et al. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161:1831–1834.
  88. Simsek F, Turkeri L, Cevik I, et al. Role of apoptosis in testicular damage caused by varicocele. Arch Esp Urol. 1998;9:947–950.
  89. Pathophysiology of varicoceles in male infertility. Naughton CK, Nangia AK, Agarwal A Hum Reprod Update. 2001 Sep-Oct; 7(5):473-81.
  90. Biochemical changes in testicular varicocele. Fujisawa M, Yoshida S, Kojima K, Kamidono S Arch Androl. 1989; 22(2):149-59.
  91. Venous tension patterns in cord veins. I. In normal and varicocele individuals. Shafik A, Bedeir GA
    J Urol. 1980 Mar; 123(3):383-5.
  92. Alteration of testicular microvascular pressures during venous pressure elevation. Sweeney TE, Rozum JS, Gore RW Am J Physiol. 1995 Jul; 269(1 Pt 2):H37-45.
  93. The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. World Health Organization.Fertil Steril. 1992 Jun; 57(6):1289-93.
  94. Hormone profile in infertile men. Papadimas J, Mantalenakis S Arch Androl. 1983 Aug; 11(1):73-80.
  95. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A
    J Urol. 1999 Jun; 161(6):1831-4.
  96. Saypol DC. Varicocele. J Androl. 1981;2:61.
  97.  Assessment of efficacy of varicocele repair for male subfertility: a systematic review. Evers JL, Collins JA Lancet. 2003 May 31; 361(9372):1849-52.
  98. Varicocele–the most common cause of male factor infertility? Redmon JB, Carey P, Pryor JL Hum Reprod Update. 2002 Jan-Feb; 8(1):53-8.Aksoy Y, Ozbey I, Aksoy H, Polat O, Akcay F. Seminal plasma nitric oxide concentration in oligo- and/or asthenozoospermic subjects with/without varicocele. Arch Androl 2002;48:181-5.
  99. The pathophysiology of varicoceles in the light of current molecular and genetic information.
    Marmar JL Hum Reprod Update. 2001 Sep-Oct; 7(5):461-72.
  100. Hormone profile in infertile men. Papadimas J, Mantalenakis S Arch Androl. 1983 Aug; 11(1):73-80.
  101. Semen profile, testicular volume, and hormonal levels in infertile patients with varicoceles compared with fertile men with and without varicoceles. Pasqualotto FF, Lucon AM, de Góes PM, Sobreiro BP, Hallak J, Pasqualotto EB, Arap S Fertil Steril. 2005 Jan; 83(1):74-7.
  102. Loss of fertility in men with varicocele. Gorelick JI, Goldstein M Fertil Steril. 1993 Mar; 59(3):613-6.
  103. Varicocele: a progressive or static lesion? Witt MA, Lipshultz LI  Urology. 1993 Nov; 42(5):541-3.
  104. Incidence of varicoceles in men with primary and secondary infertility. Jarow JP, Coburn M, Sigman M
    Urology. 1996 Jan; 47(1):73-6.
  105. The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. World Health Organization. Fertil Steril. 1992 Jun; 57(6):1289-93.
  106. The subclinical varicocele debate. Marsman JW, Schats R Hum Reprod. 1994 Jan; 9(1):1-8.
  107. Ultrasonographic diagnosis of varicoceles. Eskew LA, Watson NE, Wolfman N, Bechtold R, Scharling E, Jarow JP Fertil Steril. 1993 Oct; 60(4):693-7.
  108. Effect of varicocelectomy on sperm parameters and pregnancy rate in patients with subclinical varicocele: a randomized prospective controlled study. Yamamoto M, Hibi H, Hirata Y, Miyake K, Ishigaki T J Urol. 1996 May; 155(5):1636-8.
  109. Clomiphene citrate versus varicocelectomy in treatment of subclinical varicocele: a prospective randomized study. Unal D, Yeni E, Verit A, Karatas OF Int J Urol. 2001 May; 8(5):227-30.
  110. Goldstein M, Gilbert BR, Dicker AP, et al. Microsurgical inguinal varicocelectomy with delivery of the testis an artery and lymphatic sparing technique.
  111. Saleh Binsaleh, and Kirk C Lo Varicocelectomy: microsurgical inguinal varicocelectomy is the treatment of choice Can Urol Assoc J. 2007 Sep; 1(3): 277–278.
  112. Hopps CV, Lemer ML, Schlegel PN, et al. Intraoperative varicocele anatomy a microscopic study of the inguinal versus subinguinal approach. J Urol 2003;170:2366-70.
  113. Inguinal versus subinguinal varicocele vein ligation using magnifying loupe under local anesthesia: which technique is preferable in clinical practice? Gontero P, Pretti G, Fontana F, Zitella A, Marchioro G, Frea B
    Urology. 2005 Nov; 66(5):1075-9.
  114. Ramasamy R, Schlegel PN. Microsurgical inguinal varicocelectomy with and without testicular delivery. Urology 2006;68:1323-6.
  115. Orhan I, Onur R, Semercioz A, et al. Comparison of two different microsurgical methods in the treatment of varicocele. Arch Androl 2005;51:213-20.
  116. Al-Kandari AM, Shabaan H, Ibrahim HM, et al. Comparison of outcomes of different varicocelectomy techniques open inguinal, laparoscopic, and subinguinal microscopic varicocelectomy a randomized clinical trial. Urology 2007;69:417-20.
  117. Watanabe M, Nagai A, Kusumi N, et al. Minimal invasiveness and effectivity of subinguinal microscopic varicocelectomy a comparative study with retroperitoneal high and laparoscopic approaches. Int J Urol 2005;12:892-8.
  118. Hirsch IH, Abdel-Meguid TA, Gomella LG. Postsurgical outcomes assessment following varicocele ligation laparoscopic versus subinguinal approach. Urology 1998;51:810-5.
  119. Gontero P, Pretti G, Fontana F, et al. Inguinal versus subinguinal varicocele vein ligation using magnifying loupe under local anesthesia Which technique is preferable in clinical practice? Urology 2005;66:1075-9.
  120. Diegidio P, Jhaveri JK, Ghannam S, Pinkhasov R, Shabsigh R, Fisch H. BJU Int. 2011 Oct; 108(7):1157-72. Epub 2011 Mar 24.
  121. Hsieh ML, Chang PL, Huang ST, Wang TM, Tsui KH. Chang Gung Med J. 2003 Jul; 26(7):479-84.
  122. Schlegel PN, Kaufmann J. Role of varicocelectomy in men with nonobstructive azoospermia. Fertil Steril. 2004;81:1585–1588.
  123. Mostafa T, Anis TH, El-Nashar A, Imam H, Othman IA. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl 2001;24:261-5.
  124. Madgar I, Weissenberg R, Lunenfeld B, et al. Controlled trial of high spermatic vein ligation for varicocele in infertile men. Fertil Steril. 1995;63:120–124.
  125. Grasso M, Lania C, Castelli M, et al. Low grade left varicocele in patients over 30 years old: the effect of spermatic vein ligation. BJU Int. 2000;85:305–307.
  126. Yamamoto M, Hibi H, Hirata Y, et al. Effect of varicocelectomy on sperm parameters and pregnancy rate in patients with subclinical varicocele: a randomized prospective controlled study. J Urol. 1996;155:1636–1638.
  127. Krause W, Mueller H-H, Schaefer H, Weidner W. Does treatment of varicocele improve male fertility? Results of the “Deutsche Varikozelenstudie”, a multicentre study of 14 collaborating centres. Andrologia. 2002;34:164–171.
  128. Pasqualotto FF, Sobreiro BP, Hallak J, et al. Induction of spermatogenesis in azoospermic men after varicocelectomy repair: an update. Fertil Steril. 2006;85:635–639.
  129. Unal D, Yeni E, Verit A, Karatas OF. Clomiphene citrate versus varicocelectomy in treatment of subclinical varicocele: a prospective randomized study. Int J Urol. 2001;8:227–230.
  130. Schlesinger MH, Wilets IF, Nagler HM. Treatment outcome after varicocelectomy. A critical analysis. Urol Clin North Am. 1994;21:517–529.
  131. STEWART B.H.: Varicocele in infertility: incidence and results of surgical therapy. J Urol, 112:222–8, 1974.
  132. Pierik FH, Abdesselam SA, Vreeburg JT, Dohle GR, De Jong FH,Weber RF. Increased serum inhibin B levels after varicocele treatment. Clin Endocrinol (Oxf) 2001;54:775-80.
  133. Cayan S, Erdemir F, Ozbey I, Turek PJ, Kadioglu A, Tellaloglu S. Can varicocelectomy significantly change the way couples use assisted reproductive technologies? J Urol 2002;167:1749-52.
  134. Florke-Gerloff S et al: “Biochemical and genetic investigation of round-heat spermatozoa in infertile men including two brothers and their father”. Andrologia 1984;16:187-202.
  135. Gonzales GF, Villena A.: “True corrected seminal fructose level: a better marker of the function of seminal vesicles in infertile men”.  Int J Androl. 2001 Oct; 24(5):255-60. 
  136. Wong WY, Flik G, Groenen PM, Swinkels DW, Thomas CM, Copius-Peereboom JH, Merkus HM, Steegers-Theunissen RP. The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod Toxicol. 2001 Mar-Apr; 15(2):131-6.
  137. Saaranen M, Suistomaa U, Kantola M, Saarikoski S, Vanha-Perttula T.  Lead, magnesium, selenium and zinc in human seminal fluid: comparison with semen parameters and fertility. Hum Reprod. 1987 Aug; 2(6):475-9. 
  138. Bakalczuk S, Robak-Chołubek D, Jakiel G, Krasucki W. [Level of zinc and magnesium in semen taken from male partners of married infertile couples].  Ginekol Pol. 1994 Feb; 65(2):67-70. 
  139. Nasr-Esfahani MH, Razavi S et al: “Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI”. Reprod Biomed online  2005;11:198-205.
  140. Gandini L, Lombardo F, , Paoli D, Caponecchia L, Familiari G et al: “Study of apoptotic DNA fragmentation in human spermatozoa”. Human Reprod 2000; 15:830-839.
  141. Durakbasi-Dursun HG et al: A new approach to chromosomal abnormalities in sperm from patients with oligoasthenoteratozoospermia: detection of double aneuploidy in addition to single aneuploidy and diploidy by five-color fluorescence in situ hybridization using one probe set”. Fertil Steril 2008;89,6:1709-1717.
  142. HAAS G.G. Jr, MANGANIELLO P.: A double-blind, placebo-controlled study of the use of methylprednisolone in infertile men with sperm-associated immunoglobulins. Fertil Steril, 47:295–301, 1997.
  143. Raman JD, Schlegel PN. Aromatase inhibitors for male infertility. J Urol 2002;167:624-9.
  144. Jarow JP, Sharlip ID, Belker AM, et al. Best practice policies for male infertility. J Urol 2002;167:2138-44.
  145. Howell SJ, Shalet SM. Fertility preservation and management of gonadal failure associated with lymphoma therapy. Curr Oncol Rep 2002;4:443-52.
  146. Engin G, Kadioglu A, Orhan I, Akdol S, Rozanes I. Transrectal US and endorectal MR imaging in partial and complete obstruction of the seminal duct system. A comparative study. Acta Radiol 2000;41:288-95.
  147. Bénard F. The evaluation of male infertility. J Sex Reprod Med 2002;2:101-104.Sharlip ID, Jarow JP, Belker AM, et al. Best practice policies for male infertility. Fertil Steril 2002;77:873-82.
  148. Cornud F, Amar E, Hamida K, Thiounn N, Helenon O, Moreau JF. Imaging in male hypofertility and impotence. BJU Int 2000;861:153-63.
  149. Schroeder-Printzen I, Ludwig M, Kohn F, Weidner W. Surgical therapy in infertile men with ejaculatory duct obstruction: technique and outcome of a standardized surgical approach. Hum Reprod 2000;15:1364-8.
  150. Chuang AT, Howards SS. Male infertility. Evaluation and nonsurgical therapy. Urol Clin North Am 1998;25:703-13.
  151. Bouloux P, Warne DW, Loumaye E. Efficacy and safety of recombinant human follicle-stimulating hormone in men with isolated hypogonadotropic hypogonadism. Fertil Steril 2002;77:270-3.
  152. Foresta C, Bettella A, Ferlin A, Garolla A, Rossato M. Evidence for a stimulatory role of follicle-stimulating hormone on the spermatogonial population in adult males. Fertil Steril 1998;69:636-42.
  153. Ashkenazi J, Bar-Hava I, Farhi J, et al. The role of purified follicle stimulating hormone therapy in the male partner before intracytoplasmic sperm injection. Fertil Steril 1999;72:670-3.
  154. Hibi H, Kato K, Mitsui K, et al. The treatment with tranilast, a mast cell blocker, for idiopathic oligozoospermia. Arch Androl 2001;47:107-11.
  155. Check JH (2007). “Treatment of male infertility.”. Clin Exp Obstet Gynecol. 34 (4): 201–6.
  156. Homonnai ZT, Yavetz H, Yogev L, Rotem R, Paz GF. Clomiphene citrate treatment in oligozoospermia: comparison between two regimens of low-dose treatment.Fertil Steril. 1988 Nov;50(5):801-4.
  157. Adamopoulos DA. Medical treatment of idiopathic oligozoospermia and male factor subfertility. Asian J Androl 2000;2:25-32.
  158. Adamopoulos DA. Present and future therapeutic strategies for idiopathic oligozoospermia. Int J Androl 2000;23:320-31.
  159. March MR, Isidori A. New frontiers in the treatment of male sterility. Contraception 2002;65:279-81.
  160. Adamopoulos DA, Nicopoulou S, Kapolla N, Karamertzanis M, Andreou E (1997). “The combination of testosterone undecanoate with tamoxifen citrate enhances the effects of each agent given independently on seminal parameters in men with idiopathic oligozoospermia.”. Fertil Steril. 67 (4): 756–62.
  161. Patankar SS, Kaore SB, Sawane MV, Mishra NV, Deshkar AM. Effect of clomiphene citrate on sperm density in male partners of infertile couples. Indian J Physiol Pharmacol. 2007 Apr-Jun; 51(2):195-8. 
  162. Vandekerckhove P, Lilford R, Vail A, Hughes E. Clomiphene or tamoxifen for idiopathic oligo/asthenospermia. Cochrane Database Syst Rev. 2000; (2):CD000151.
  163. Vandekerckhove P, Lilford R, Vail A, Hughes E.  WITHDRAWN: Clomiphene or tamoxifen for idiopathic oligo/asthenospermia. Cochrane Database Syst Rev. 2007 Jul 18; (4):CD000151. Epub 2007 Jul 18.
  164. Hammami MM. Hormonal evaluation in idiopathic oligozoospermia: correlation with response to clomiphene citrate therapy and sperm motility.  Arch Androl. 1996 May-Jun; 36(3):225-32. 
  165. Patankar SS, Kaore SB, Sawane MV, Mishra NV, Deshkar AM. Effect of clomiphene citrate on sperm density in male partners of infertile couples. Indian J Physiol Pharmacol. 2007 Apr-Jun; 51(2):195-8. 
  166. Paulson DF, Wacksman J.  Clomiphene citrate in the management of male infertility.   J Urol. 1976 Jan; 115(1):73-6. 
  167. Ross LS, Kandel GL, Prinz LM, Auletta F.  Clomiphene treatment of the idiopathic hypofertile male: high-dose, alternate-day therapy.  Fertil Steril. 1980 Jun; 33(6):618-23. 
  168. Sharma KK, Barratt CL, Pearson MJ, Cooke ID. Oral steroid therapy for subfertile males with antisperm antibodies in the semen: prediction of the responders.Hum Reprod. 1995 Jan; 10(1):103-9. 
  169. Curtis P, Preutthipan S, Gleeson K, Shaw RW. Effect of low-dose prednisolone on sperm fertilizing capacity in subfertile men with circulating antisperm antibodies.  Arch Androl. 1994 Sep-Oct; 33(2):111-8. 
  170. Lenzi A, Lombardo F, Sgro P, Salacone P, Caponecchia L, Dondero F, Gandini L (1991). “Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial.”. Fertility and Sterility. 25 (5): 1253–326.
  171. Francavilla F, Sciarretta F, Sorgentone S, Necozione S, Santucci R, Barbonetti A, Francavilla S (2009). “Intrauterine insemination with or without mild ovarian stimulation in couples with male subfertility due to oligo/astheno- and/or teratozoospermia or antisperm antibodies: a prospective cross-over trial.”. Fertil Steril. 92 (3): 1009–11.
  172. Sah, P (October 1998). “Role of low-dose estrogen-testosterone combination therapy in men with oligospermia.”. Fertility and Sterility. 70 (4): 780–1.
  173. Sah, P (1 January 2005). “Oligospermia In A Man With Small Testes And Elevated Serum FSH Responds To Low Dose Estrogen-Testosterone Combination Therapy, Resulting In His Wife’s Pregnancy And Live Birth”. The Internet Journal of Endocrinology. 2 (1).

 

  1. AGARWAL A.: Treatment of immunological infertility by sperm washing and intrauterine. Arch Androl, 29:207–13, 1992.
  2. LAHTEENMAKI A., VEILAHTI J., HOVATTA O.: Intra-uterine insemination versus cyclic, low-dose prednisolone in couples with male antisperm antibodies. Hum Reprod, 10:142–7, 1995.
  3. ROBINSON J.N., FORMAN R.G.,NICHOLSONS.C., MACIOCIA L.R., BARLOW D.H.: A comparison of intrauterine insemination in superovulated cycles to intercourse in couples where the male is receiving steroids for the treatment of autoimmune infertility. Fertil Steril, 63:1260–6, 1995.21.
  4. Lozano G.M., Bejarano, I., Espino, J., González, D., Ortiz, A., García, J.F., Rodríguez, A.B., Pariente, J.A. (2009). “Density gradient capacitation is the most suitable method to improve fertilization and to reduce DNA fragmentation positive spermatozoa of infertile men”. Anatolian Journal of Obstetrics & Gynecology 3(1): 1-7.
  5. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992). “Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation”. J Cell Biol. 119 (3): 493–501.
  6. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995). “In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note”. Hepatology. 21 (5): 1465–8.
  7. Negoescu A, Lorimier P, Labat-Moleur F, Drouet C, Robert C, Guillermet C, Brambilla C, Brambilla E (1996). “In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations”. J Histochem Cytochem. 44 (9): 959–68. 
  8. Negoescu A, Guillermet C, Lorimier P, Brambilla E, Labat-Moleur F (1998). “Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity”. Biomed Pharmacother. 52 (6): 252–8.
  9. Sergerie M, Laforest G, Bujan L, Bissonnette F, Bleau G. Sperm DNA fragmentation: threshold value in male fertility.  Hum Reprod. 2005 Dec; 20(12):3446-51. Epub 2005 Aug 5.
  10. [Measurement of sperm DNA integrity by sperm chromatin dispersion test and TdT-mediated dUTP nick end labeling assay]. Zhang LH, Qiu Y, Wang KH, Li J, Zhang MX, Liu J, Jia YF, Wu AH, Zhang AD, Wang LG. Zhonghua Yi Xue Za Zhi. 2009 Apr 14; 89(14):970-2. 
  11. Sergerie M, Bleau G, Teulé R, Daudin M, Bujan L. [Sperm DNA integrity as diagnosis and prognosis element of male fertility]. Gynecol Obstet Fertil. 2005 Mar;33(3):89-101.
  12. Zhang LH, Qiu Y, Wang KH, Wang Q, Tao G, Wang LG. Measurement of sperm DNA fragmentation using bright-field microscopy: comparison between sperm chromatin dispersion test and terminal uridine nick-end labeling assay.  Fertil Steril. 2010 Aug; 94(3):1027-32. Epub 2009 Jun 7.
  13. Manuale di laboratorio della WHO per l’esame del liquido seminale umano  e dell’interazione tra spermatozoi e muco cervicale. Volume 37, N. 1, 2001. ISSN 0021-2571 Coden: AISSAW 37 (N. 1) 1-124 (2001)
Andrologia, Sessualità, Spermiogramma

Criptorchidismo

IL CRIPTORCHIDISMO: una delle più comuni patologie dell’età pediatrica. Si definisce come mancata o incompleta discesa di uno o entrambi i testicoli nel sacco scrotale.

 Cenni di embriogenesi: Il testicolo nasce, nella vita intrauterina, all’interno della cavità addominale, vicino ai reni, e progressivamente, migra verso la borsa scrotale per cui alla nascita, quasi tutti i bambini hanno entrambi i testicoli normalmente presenti nello borsa scrotale (la tunica vaginale che avvolge il testicolo non è altro che  un’emanazione del sacco peritoneale che il testicolo si trascina dietro lungo la sua discesa nel sacco scrotale. Il canale che fa comunicare il peritoneo con la borsa scrotale è il dotto peritoneo-vaginale che normalmente poi si chiude e fa sì che la vaginale del testicolo non comunichi più con il peritoneo nella vita extrauterina (1). Può accadere che questa migrazione del testicolo venga interrotto per motivi diversi in un punto qualunque del tragitto.  In questo caso, si parla di criptorchidismo, cioè di testicolo non disceso (1-5). Il mancato descensus del testicolo determina quella condizione clinica conosciuta come “scroto vuoto” che  riconosce come etiologia non solo il criptorchidismo ma diversi quadri clinici (tab. 1).

E’ bene distinguere il criptorchidismo dall’ectopia testicolare, cioè quando il testicolo non si trova nello scroto ma in una sede diversa da quello che è il tragitto che il testicolo normalmente compie per giungere nel sacco scrotale.

Nell’agenesia testicolare invece, il testicolo è del tutto assente.

Frequenza: L’incidenza del criptorchidismo è del 3,4% nei neonati a termine e del 30,3% in quelli prematuri. Minore è lo sviluppo del prematuro e maggiore risulta l’incidenza del criptorchidismo: i  prematuri <900 gr di peso alla nascita presentano criptorchidismo nel 100% dei casi. Al raggiungimento del I° anno di vita l’incidenza si riduce allo 0,8% a causa del tasso ematico di testosterone relativamente alto nel primo trimestre di vita.  Passato questo periodo è molto improbabile una spontanea discesa del testicolo criptorchide. Ciò è verificato dal fatto che l’incidenza nell’adulto è pressocchè sovrapponibile (0,5 -0,8 %) a quella del bambino ad un anno di vita.   Il lato sinistro è più frequentemente interessato del destro; per cui è presumibile ritenere che la discesa della gonade dal lato sinistro sia più tardiva  durante la vita fetale (3-5).

FISIOLOGIA DEL DESCENSUS TESTICOLARE.

Schematicamente la discesa del testicolo è divisibile in tre stadi:

1)  Allontanamento della zona perirenale, che si verifica entro la 7w di gestazione.

2)  Migrazione trans-addominale fino all’anello inguinale interno che termina alla 12a w.

3)  Migrazione attraverso il canale inguinale fino alla localizzazione  intrascrotale che si verifica dal settimo mese fino alla nascita o poco dopo.

I fattori ormonali che regolano la migrazione sono  l’LH-RH ipotalamico che induce la sintesi nella pre-ipofisi di FSH, LH e la loro secrezione in circolo. L’FSH  ha come organo bersaglio le cellule del Leydig inducendo i recettori per l’LH ad una risposta massimale. L’LH induce la sintesi e secrezione in circolo del testosterone dalle cellule di Leydig. In perferia il testosterone captato dai tessuti bersaglio è attivato da una 5-alfa reduttasi nella forma attiva di deidrotestosterone (DHT). Il DHT combinato con proteine recettoriale induce la migrazione del testicolo dall’anello inguinale interno allo scroto: attraverso l’ingrossamento, l’invaginazione e l’accorciamento del gubernaculum che a sua volta provoca, con la sua messa in tensione, l’allargamento del canale inguinale. Recentemente é stato ipotizzato anche un modello ormonale bifasico in cui si ritiene che non siano solo gli androgeni a controllare la discesa testicolare. Questo modello prevede che le fasi di discesa siano solo due: trans-addominale e trans-inguinale. La fase trans-addominale è controllata da un ormone non androgeno identificato nel fattore X o MIS (Mulleran inhibiting substance); mentre la fase trans-inguinale è controllata dagli androgeni (testosterone e diidrotestosterone). La sede più frequente ove il testicolo si ferma è il canale inguinale, cioè il tragitto che intercorre tra il muscolo obliquo interno, il muscolo trasverso e la fascia del muscolo obliquo esterno.  In casi più rari il testicolo può addirittura fermarsi all’interno della cavità addominale, nel retroperitoneo (5-9)

 ETIOLOGIA:

1)    Insensibilità del testicolo alle gonadotropine (Ipogonadismo Primario)

2)    Deficit di produzione di gonadotropine (Ipopituitarismo): circa un terzo dei ragazzi affetti da ipogonadismo ipogonadotropo è criptorchide e il riscontro di un criptorchidismo, specie se associato ad anosmia, può far scoprire talvolta un deficit di LH (S. di Kallmann). 

3)    Ostacolo anatomico alla discesa: I fattori meccanici hanno un ruolo certo, ma non esclusivo; rappresentano circa il 50% delle possibili cause di criptorchidismo. Gli ostacoli anatomici più frequenti sono: l’impervietà del canale inguinale, l’ernia inguinale, l’esistenza di un’aponeurosi fibrosa al limite tra l’orifizio inguinale e la borsa scrotale e la brevità di uno degli elementi del funicolo spermatico (in particolare, l’arteria).

4)    Disgenesie congenite: oltre 50 sindromi con anomalie cromosomiche, più di 60 senza anomalie cromosomiche e un discreto numero di sindromi malformative da cause esogene presentano il criptorchidismo come elemento più o meno costante (23-25)

 

ANATOMIA PATOLOGICA.

Già nel 1929 Cooper e coll. descrissero numerose alterazioni istologiche presenti nel testicolo criptorchide. Nel 1967 Hecker e coll. con studi condotti in microscopia ottica hanno evidenziato che in gruppi di bambini con età fino a cinque anni il tessuto testicolare presentava una maturazione molto vicina a quelli dei soggetti controllo di pari età. Nell’intervallo di età compresa tra i 6 ed i 10 anni solo l’8% presentava una maturazione normale; questa non era presente in nessun del gruppo tra gli 11 e i 15 anni. Gli stessi autori hanno anche riportato che nel testicolo controlaterale a quello criptorchide vi era una maturazione compatibile con l’età solo nel 45% dei casi del gruppo 6-10 anni e nel 36% in quelli del gruppo 11-15 anni. Più recenti analisi su gruppi di bambini criptorchidi con l’ausilio della microscopia ottica ed elettronica, hanno evidenziato alterazioni morfostrutturali già in età più precoce (22).

Ad un anno sono presenti alterazioni ultrastrutturali delle cellule  di Leydig; a 2 anni si nota un aumento delle fibre collagene della tunica dei tubuli seminiferi  ed una diminuzione della densità volumetrica degli spermatogoni;  dai tre anni si ha un ispessimento della tonaca propria dei tubuli seminiferi ed una progressiva diminuzione delle cellule spermatiche. Secondo alcuni autori queste alterazioni precoci  non rappresentano la conseguenza del criptorchidismo, ma riflettono un difetto congenito del testicolo inteso come una displasia testicolare primitiva in entrambe le gonadi anche nei pazienti criptorchidi monolaterali. Tali osservazioni sono supportate dal riscontro di anomalie istologiche anche nel testicolo controlaterale normalmente disceso.  Questi risultati sono in  accordo  con la constatazione dell’infertilità maggiore tra i soggetti criptorchidi unilaterali e della maggiore incidenza di neoplasie maligne nel testicolo normoposizionato. In definitiva questi dati confermano la necessità di un orchidopessi prima dei due anni di età e comunque entro i 4 o 5 anni piuttosto che attendere se alla pubertà si dovesse completare spontaneamente la discesa dello scroto, anche perchè la riduzione della spermatogenesi è proporzionale a livello anatomico della criptochidia ed all’epoca di correzione della stessa.

 

FERTILITA’ E CRIPTORCHIDISMO.

L’infertilità costituisce insieme alla possibile torsione del testicolo ritenuto una delle maggiori complicanze del criptochidismo. E’ indubbio che il danno ai tubuli seminiferi del testicolo criptorchide sia responsabile di una minore  fertilità. Cywes e coll. nel 1981 hanno effettuato una analisi delle statistiche presenti in letteratura sui dati di 228 pz criptochidi trattati in periodo prepuberale con orchidopessi. Da questo studio hanno riscontrato un’incidenza di fertilità (n. di spermatozoi/ml >20 milioni) del 42%, però di questi solo il 10% presentava conte spermatiche >60 milioni contro una media di 73,7 milioni per la popolazione fertile di controllo. Lo stesso Autore su di una casistica propria di pazienti con criptorchidismo  monolaterale ha ottenuto un’incidenza di fertilità teorica (>20 milioni) nel 68% dei casi, ma presentando una conta >di 60 milioni solo nel 35% dei casi, tutti trattati in età prepubere ((27-32).

Dall’ analisi di queste casistiche tre sono i concetti che appaiono prevalere:

Gli individui criptorchidi, anche se monolaterali e corretti in età prepubere, presentano indici di fertilità assoluta (>60 milioni) diminuiti rispetto alla popolazione normale, variando dal 10 al 20%;

Il testicolo criptorchide va incontro ad alterazioni degenerative, solo parzialmente reversibili con il riposizionamento  in sede anatomica,  evidenziato dall’indice di fertilità teorica (>20 milioni) che a seconda delle casistiche varia dal 45 al 70%;

Il testicolo ritenuto e lasciato a se stesso, presenta alla pubertà una scarsissima probabilità di possedere una spermatogenesi normale.

In conclusione l’orientamento circa il recupero della fertilità è quello di effettuare l’intervento al più presto possibile  perché le alterazioni della spermatogenesi avvengono già prima del 1° anno di vita (1).

 CRIPTORCHIDISMO E NEOPLASIE TESTICOLARI.

Il criptorchidismo rappresenta il fattore di rischio più frequente nel determinare l’insorgenza del cancro del testicolo. Da numerosi studi si è notato come il rischio relativo di insorgenze  del carcinoma del testicolo aumenti da 3 (nelle persone con testicolo in sede ortotopica) a 14 (nelle persone con testicolo criptorchide).  Il pericolo di insorgenza é legato anche alla sede dove il testicolo é localizzato, nel senso che il rischio di neoplasia in un testicolo non disceso é tanto più  frequente quanto più alta é la sede anomala. La forma istologica più frequente è il seminoma, mentre l’età di deviazione neoplastica è quasi sempre al di sopra del 10° anno di vita (33-37).

Il riportare tramite orchidopessi il testicolo non migrato nello scroto non costituisce una sufficiente garanzia alla possibile insorgenza del cancro; in particolare, l’ intervento di orchidopessi con o senza biopsia testicolare intraoperatoria, eseguito dopo l’ infanzia non previene il rischio nè l’incidenza di neoplasia. Il vantaggio che si ricava però da tale procedura è costituito dalla facile ispezione e palpazione della gonade interessata, per cui la diagnosi precoce di neoplasia, e il controllo nel tempo del testicolo riposto in sede anatomica, sono resi più agevoli. Tuttavia vi è anche la reale possibilità che un eventuale tumore insorto nel testicolo riposto nella borsa scrotale possa avere una diversa è maggiore diffusione linfoghiandolare, con interessamento precoce dalle stazioni inguinali, grazie alle neoanastomosi linfatiche createsi dopo l’intervento. In virtù di questa eventualità, alcuni A.A., in caso di criptorchidia monolateraleaddominale o in ogni caso di soggetti adultisostengono che sia preferibile eseguire sempre una orchiectomia poichè il testicolo ha poche possibilità di essere fertile, molte di sviluppare una neoplasia e poche di essere abbassato chirurgicamente (38-42).

Anche  per il testicolo controlaterale e quello criptorchide è verificato un aumento di due volte il rischio relativo di incidenza neoplastica, pur se in sede ortotopica, sulla base della teoria della displasia congenita delle gonadi (42).

Nella eziopatogenesi del criptorchidismo rivestono un ruolo importante gli ormoni estrogeni non steroidei che possono essere chiamati come possibili fattori di rischio per i tumori del testicolo. In letteratura sono  riportati numerosi casi di cavie gravide trattate con dietilstilbestrolo nella cui prole maschili si è notato un aumento dei casi di criptorchidismo. Analogamente in donne che hanno assunto estrogeni (e progestinici) durante i primi mesi di gestazione come test per accertamento della gravidanza, come metodo per il controllo delle nascite o come adiuvante durante il loro periodo di fertilità è stato accertato un aumento del rischio di criptorchidismo di ben 3-4 volte e quindi dei tumori testicolari.

APPROCCIO DIAGNOSTICO NELLA RICERCA DEL TESTICOLO NON PALPABILE.

L’approccio diagnostico per la ricerca non palpabile ha evidenziato, in questi ultimi anni notevoli progressi, consentendo un più corretto approccio teraupeutico al problema, permettendo un preciso e razionale orientamento chirurgico. Con le indagini angiografiche (arteriografia e venografia spermatica selettiva) è possibile determinare in modo attendibile, la presenza o assenza di un testicolo attraverso l’individuazione o meno, rispettivamente, di un plesso arterioso epididimale  o di un plesso venoso pampiniforme. Ambedue le indagini non sono facilmente eseguibili in tutti casi e, come tutte le metodiche angiografiche, oltre all’insorgenza di possibili e non trascurabili complicanze (lacerazioni vascolari, embolia, insufficienza renale acuta), richiedono competenza specifica ed esperienza, sedazione o anestesia nei bambini e l’esposizioni a grosse dosi di radiazioni (43). La laparoscopia esplorativa permette di visualizzare il deferente ed i vasi spermatici allo loro uscita del canale inguinale attraverso l’anello inguinale interno (43). Le informazioni desumibili dalla ricerca laparoscopica del testicolo possono essere:

  • testicolo intraperitoneale, in genere ad 1-3 cm dall’anello inguinale interno;
  • testicolo ritenuto nel canale inguinale: non direttamente osservabile il testicolo ma si evidenziano i vasi testicolari ed il deferente emergente dal canale stesso;
  • atrofia testicolare, in questo caso i vasi testicolari sono entrambi assenti o visibilmente ipoplasici. 

La TAC addomino-pelvica fa parte delle indagini non invasive, ma utile per la localizzazione di testicoli non palpabili. Essa appare essere più completa della ecotomografia, ma risulta essere di scarsa utilizzazione nei bambini al di sotto dei 5 anni di età. Il testicolo in questi pazienti appare di difficile interpretazione sia per le piccole dimensioni, sia  per la mancanza  di un sufficiente  contrasto del tessuto adiposo; la sua efficacia cresce per lo studio del testicolo non palpabile dopo la pubertà. La non discesa del testicolo è evidenziata dalla sua assenza e delle strutture spermatiche sotto il livello della cresta iliaca.

Anche la RMN è utilizzata per questo tipo di studio: il testicolo, nelle sequenze  di immagini successive, appare come un organo di media intensità, in contrasto con l’alta intensità  del tessuto adiposo. La risoluzione della metodica è accurata solo nella localizzazione nel canale inguinale, presentando gli stessi limiti della TAC, in relazione dell’età del paziente, nell’individuazione di un testicolo intraddominale o pelvico.

L’ecotomografia è stata utilizzata nello studio del canale inguinale, della pelvi e della cavità addominale; essa ha, però, evidenziato la sua massima affidabilità ed accuratezza nello studio del canale inguinale e quindi nel testicolo palpabile. Le informazioni desumibili dallo studio ecografico del canale inguinale  sono descritti nella tab. 2.

 

Tab. 2 – USG criptorchidismo
Sede Calcolando attraverso rapporti anatomici, valutati ecograficamente, la distanza tra il testicolo e l’anello interno od esterno.
Rapporti con i vasi iliaci e con la vescica.
Mobilità esercitando una modica trazione con la sonda, utile per valutare se il canale inguinale è anatomicamente ristretto o chiuso (inutilità della terapia medica).
Biometria rispetto al controlaterale.
Forma di solito più ovale ed appiattita rispetto al controlaterale.
Margini usualmente lineari e regolari.
Ecostruttura ipoecogena, qualora vi sia un’immaturità ghiandolare;
iperecogena, qualora vi sia sclero-atrofia ghiandolare;
disomogenea, qualora vi sia un’atrofia parcellare (più frequente nell’adulto).
Disomogenità associata ad un aumento volumetrico ghiandolare depone per un sospetto di degenerazione neoplastica.

 

Da questa disamina tra le varie indagini utilizzabili nella ricerca di un testicolo non palpabile si ha

  • Bambini di età <5 anni: laparoscopia esplorativa tra le metodiche invasive per la localizzazione pre-operatoria intraddominale, seguita nella stessa seduta dall’orchidopessi. 
  • Bambini di età >5 anni: TAC o RMN addomino-pelvica tra le non invasive. La laparoscopia esplorativa seguita da orchidopessi tra quelle invasive  con associata biopsia effettuata dopo la pubertà. Ecotomografia per il testicolo    ritenuto nel canale inguinale.
TERAPIA DEL CRIPTORCHIDISMO: può essere medica e/o chirurgica; l’età d’elezione per il trattamento del criptorchidismo deve ritenersi tra il I° e il II° anno di vita; le opzioni terapeutiche prevedono la terapia ormonale, l’orchidopessi e l’orchiectomia. Il successo terapeutico dipende dall’età del paziente e dalla posizione del testicolo (44-60).

 Terapia Medica:  al momento attuale vengono utilizzati due presidii terapeutici ormonali: hCG e Gn-RH. La gonadotropina corionica (hCG) viene utilizzata in virtù della sua capacità nello stimolare le cellule di Leydig alla produzione di testosterone, il cui incremento plasmatico favorisce la discesa dei testicoli. Il Gn-RH stimola la secrezione LH e conseguentemente le cellule del Leydig nella secrezione di testosterone.  

L’HCG (Gonasi HP®fiale s.c. 2.000 e 5.000 UI; Ovitrelle® (r-HCG) 250 mcg/5 ml (= 5.000 UI)  fl s.c.; Pregnyl ) ha mostrato un grado di efficacia variabile dal 14 al 50%  nell’indurre la discesa del testicolo con dosi totali da 3000 UI a 40.000 UI frazionate in 6 settimane. La frequenza di somministrazione é variata da giornaliera a settimanale. Fino a 15.000 UI non si determinano modificazioni istologiche del testicolo e variazioni dell’età ossea. Raramente si riscontra un incremento delle dimensioni del pene, che comunque regredisce al termine della terapia.

L’utilizzo del Gn-RH esogeno come terapia del criptorchidismo alla dose di 1,2 mg/die sotto forma di spray nasale (Gonadorelina, Kryptocur® 0,2 mg/dose) che libera 0,2 mg di GnRH ogni puff. La posologia giornaliera è di 1,2 mg di gonadorelina, equivalente cioè a 6 spruzzate (3 in ciascuna narice), da suddividere in tre volte al dì prima dei pasti.  La gonadorelina può essere somministrata  anche  per infusione pulsatile ev/sc (Gonadorelina, Lutrelef® flac 10.8 mg/10 ml = 8.0 mg di farmaco/flac)  mediante microinfusori computerizzati e portatili. Le dosi variano da 1 a 30 µg per bolo con una frequenza di somministrazione fra i 60 ed i 180 minuti. La durata della terapia è programmata in cicli di quattro settimane. Risulta efficace in misura variabile dal 6 al 70% (59,60). La spiegazione  a questa così ampia  differenza di risultati in studi sull’impiego del Gn-Rh tra diversi autori può essere dovuta al fatto che i testicoli retrattili non furono accuratamente esclusi nei primi studi dando esito a tassi di successo superiore a quelli di studi successivi in cui maggiore attenzione è stata posta nell’esclusione dei pazienti con testicoli retrattili. Non sono riportate alterazione sul testicolo come crescita precoce.

Nei pazienti in cui non viene osservato nessuno effetto, si somministra hCG alla dose di 1500 UI ogni settimana per 3 settimane migliorando la risposta teraupetica fino al 67%. I livelli di testosterone nel corso della terapia del  criptorchidismo sono risultati più alti con l’hGC che con il Gn-RH. L’uso prolungato  di tali composti in età pre-puberale é assolutamente  controindicato  dal momento che esso potrebbe dar luogo a saldatura precoce dell’epifisi ed a  soppressione dello sviluppo gonadico.

 Terapia chirurgica

L’orchidopessi, cioè la riposizione del testicolo nella sacca scrotale  e la sua fissazione in questa sede, resta il trattamento elettivo del criptorchidismo in età prescolare ove la terapia medica abbia fallito. Tale intervento, se effettuato verso il II° anno di vita (e comunque sempre prima dei 4-5 anni), consente un soddisfacente recupero  funzionale della gonade, un dimuito rischio  di degenerazione neoplastica  e un danno psicologico ridotto, per il bambino, dovuto alla  sindrome della borsa scrotale vuota (81-67).

In età post-puberale l’orchidopessi ha una sola funzione: rendere più accessibile il testicolo al controllo clinico e quindi per una diagnosi precoce di evoluzione maligna; oltre all’effetto “estetico” dello scroto pieno.

E’ sempre, invece, da eseguire l’orchiectomia nell’adulto con l’impianto di protesi testicolari, da praticare sia a scopo preventivo oncologico sia per prevenire la possibilità che autoanticorpi formatisi contro il testicolo criptorchide, ritenuto non-self, possano inficiare la linea seminale del testicolo sano.

In caso di orchidopessi difficile (testicolo addominale troppo alto, con vasi troppo corti), le alternative all’orchiectomia sono la sezione alta dei vasi spermatici e affidamento del trofismo testicolare ai vasi deferenziali con orchidopessi quanto più bassa possibile. Successivo reintervento di orchidopessi in sede scrotale dopo opportuna terapia ormonale mirata ad un miglioramento del trofismo della gonade ed allungamento dei vasi.

Tecnica dell’orchidopessi:

1)    Incisione della piega cutanea che sovrasta l’ anello inguinale interno

2)    Incisione del m. obliquo esterno.

3)    Separazione del testicolo dal peritoneo locale per eliminare aderenze fibrose

4)    Se la lunghezza dei vasi spermatici è adeguata, procedere con la discesa

5)    Se la lunghezza non permette la discesa, in un primo tempo si porta il testicolo soltanto fuori  dell’anello inguinale; a distanza di tempo, in un secondo intervento, si procede alla discesa senza più tensioni, quando si è avuta la crescita in lunghezza dei vasi. Oppure  avvalersi della tecnica di Fowler e Stephens, che consiste nella sezione dei vasi spermatici interni e nel posizionamento del testicolo nell’emiscroto affidando il suo apporto arterioso alle altre arterie minori. Oppure ricorrere all’autotrapianto del testicolo con anastomosi microchirurgica termino-terminale con i vasi spermatici ed epigastrici inferiori; è un intervento relativamente recente, tecnicamente impegnativo e gravato da molte complicanze (69,70).

Complicanze: atrofia testicolare e infezioni sopravvengono nel 10% dei casi fino al 25% per le posizioni addominali (69,70).  

BIBLIOGRAFIA:

  1. Wensing CJ. The embryology of testicular descent. Horm Res. 1988;30(4-5):144-52.
  2. Russel, L. (1992). Normal Development of the Testis. In U. Mohr, D. Dungworth, C. Capen,(Eds.), Pathobiology of the Aging Rat, Volume 1 (pp. 395-403). Washington D.C.: Intl Life Sciences Inst Press.
  3. Backhouse KM. The natural history of testicular descent and maldescent. Proc R Soc Med. Apr 1966;59(4):357-60.
  4. Elert A, Jahn K, Heidenreich A, et al. [The familial undescended testis]. Klin Padiatr. Jan-Feb 2003;215(1):40-5.
  5. Heyns CF, Hutson JM. Historical review of theories on testicular descent. J Urol. Mar 1995;153(3 Pt 1):754-67.
  6. Hutson JM, Beasley SW. The mechanisms of testicular descent. Aust Paediatr J. Aug 1987;23(4):215-6
  7. Heyns CF. The gubernaculum during testicular descent in the human fetus. J Anat. Aug 1987;153:93-112
  8. Toppari J, Kaleva M. Maldescendus testis. Horm Res. Dec 1999;51(6):261-9.
  9. Frey HL, Peng S, Rajfer J. Synergy of abdominal pressure and androgens in testicular descent. Biol Reprod. Dec 1983;29(5):1233-9.
  10. Maeda, K., Ohkura, S., & Tsukamura, H. (2000). Physiology of Reproduction: Puberty. In G. Krinke,(Ed.), The Laboratory Rat (Handbook of Experimental Animals) (pp. 145-176). Toronto: Academic Press.
  11. Suckow, M., Weisbroth, S., & Franklin, C. (2005). The Laboratory Rat, Second Edition (American College of Laboratory Animal Medicine). Toronto: Academic Press.
  12. Keeble, E., & Meredith, A. (2009). BSAVA Manual of Rodents and Ferrets (BSAVA Manuals Series). Gloucester: Bsava.
  13. Pholpramool, C., White, R., & Setchell, B. (1982). Influence of androgens on inositol secretion and sperm transport in the epididymis of rats. J Reprod Fertil, 66(2), 547-53.
  14. Hutson JM, Donahoe PK. The hormonal control of testicular descent. Endocr Rev. Aug 1986;7(3):270-83.
  15. Shono T, Ramm-Anderson S, Goh DW, et al. The effect of flutamide on testicular descent in rats examined by scanning electron microscopy. J Pediatr Surg. Jun 1994;29(6):839-44.
  16. Ahmed SF, Cheng A, Dovey L, et al. Phenotypic features, androgen receptor binding, and mutational analysis in 278 clinical cases reported as androgen insensitivity syndrome. J Clin Endocrinol Metab. Feb 2000;85(2):658-65.
  17. Yamanaka J, Baker M, Metcalfe S, et al. Serum levels of Mullerian inhibiting substance in boys with cryptorchidism. J Pediatr Surg. May 1991;26(5):621-3.
  18. Hutson JM, Watts LM. Both gonadotropin and testosterone fail to reverse estrogen-induced cryptorchidism in fetal mice: Further evidence for nonandrogenic control of testicular descent in the fetus. Pediatr Surg Int. 1990;5:13-18.
  19. Fentener van Vlissingen JM, Koch CA, Delpech B, et al. Growth and differentiation of the gubernaculum testis during testicular descent in the pig: changes in the extracellular matrix, DNA content, and hyaluronidase, beta-glucuronidase, and beta-N-acetylglucosaminidase activities. J Urol. Sep 1989;142(3):837-45.
  20. Hadziselimovic F, Duckett JW, Snyder HM 3rd, et al. Omphalocele, cryptorchidism, and brain malformations. J Pediatr Surg. Sep 1987;22(9):854-6.
  21. Tzvetkova P, Tzvetkov D. Etiopathogenesis of cryptorchidism and male infertility. Arch Androl. Sep-Oct 1996;37(2):117-25.
  22. Elder JS. Epididymal anomalies associated with hydrocele/hernia and cryptorchidism: implications regarding testicular descent. J Urol. Aug 1992;148(2 Pt 2):624-6.
  23. Storm D, Redden T, Aguiar M, et al. Histologic evaluation of the testicular remnant associated with the vanishing testes syndrome: is surgical management necessary?. Urology. Dec 2007;70(6):1204-6.
  24. Levard G, Laberge JM. The fate of undescended testes in patients with gastroschisis. Eur J Pediatr Surg. Jun 1997;7(3):163-5.
  25. Koivusalo A, Taskinen S, Rintala RJ. Cryptorchidism in boys with congenital abdominal wall defects. Pediatr Surg Int. Mar 1998;13(2-3):143-5.
  26. Scorer CG, Farrington GH. Congenital Deformities of the Testis and Epididymis, New York, Appleton-Century-Crofts. 1971.
  27. Agarwala, S., & Mitra, K. (1996). Fertility and unilateral undescended testis in the rat model. Pediatric Surgery International, 11(4), 266-268.
  28. McAleer IM, Packer MG, Kaplan GW, et al. Fertility index analysis in cryptorchidism. J Urol. Apr 1995;153(4):1255-8.
  29. Hadziselimovic F, Herzog B. The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet. Oct 6 2001;358(9288):1156-7.
  30. Lee PA, O’Leary LA, Songer NJ, et al. Paternity after cryptorchidism: lack of correlation with age at orchidopexy. Br J Urol. Jun 1995;75(6):704-7.
  31. Cendron M, Keating MA, Huff DS, et al. Cryptorchidism, orchiopexy and infertility: a critical long-term retrospective analysis. J Urol. Aug 1989;142(2 Pt 2):559-62; discussion 572.
  32. Coughlin MT, Bellinger MF, LaPorte RE, et al. Testicular suture: a significant risk factor for infertility among formerly cryptorchid men. J Pediatr Surg. Dec 1998;33(12):1790-3.
  33. Cortes D, Thorup JM, Visfeldt J. Cryptorchidism: aspects of fertility and neoplasms. A study including data of 1,335 consecutive boys who underwent testicular biopsy simultaneously with surgery for cryptorchidism.Horm Res. 2001;55(1):21-7.
  34. Huff DS, Fenig DM, Canning DA, et al. Abnormal germ cell development in cryptorchidism. Horm Res. 2001;55(1):11-7.
  35.  Stuart A et al: “Evaluation of men with unilateral or bilateral uindescended testes: does age of correction make a difference?”. Fertil Steril 2003;80,suppl 3,S4
  36. Abratt RP, Reddi VB, Sarembock LA. Testicular cancer and cryptorchidism. Br J Urol. Dec 1992;70(6):656-9.
  37. Tuazon E, Banks K, Koh CJ, et al. Re: Prepubertal orchiopexy for cryptorchidism may be associated with lower risk of testicular cancer. J Urol. Aug 2008;180(2):783-4; author reply 784-5.
  38. Walsh TJ, Dall’Era MA, Croughan MS, et al. Prepubertal orchiopexy for cryptorchidism may be associated with lower risk of testicular cancer. J Urol. Oct 2007;178(4 Pt 1):1440-6; discussion 1446.
  39. Campbell HE. Incidence of malignant growth of the undescended testicle: A critical and statistical study.Arch Surg. 1942;44:353.
  40. Martin DC. Germinal cell tumors of the testis after orchiopexy. J Urol. Apr 1979;121(4):422-4.
  41. Pettersson A, Richiardi L, Nordenskjold A, et al. Age at surgery for undescended testis and risk of testicular cancer. N Engl J Med. May 3 2007;356(18):1835-41.
  42. Giwercman A, Dezuyei N, Lundwall A, et al. Testicular cancer and molecular genetics. Andrologia. Dec 2005;37(6):224-5.
  43. Lenz S, Skakkebaek NE, Hertel NT. Abnormal ultrasonic pattern in contralateral testes in patients with unilateral testicular cancer. World J Urol. 1996;14 Suppl 1:S55-8. [Medline].
  44. Cisek LJ, Peters CA, Atala A, et al. Current findings in diagnostic laparoscopic evaluation of the nonpalpable testis. J Urol. Sep 1998;160(3 Pt 2):1145-9; discussion 1150. [Medline].
  45. Kolon TF, Herndon A, Baker LA, et al. Evaluation and Treatment of Cryptorchidism: AUA Guideline. Journal of Urology. American Urological Association. Published online May 20, 2014. Available athttp://www.jurology.com/article/S0022-5347(14)03531-9/fulltext. Accessed November 12, 2014.
  46. Kolon TF, Herndon CD, Baker LA, Baskin LS, Baxter CG, Cheng EY, et al. Evaluation and treatment of cryptorchidism: AUA guideline. J Urol. Aug 2014;192(2):337-45. [Medline].
  47. Farrer JH, Walker AH, Rajfer J. Management of the postpubertal cryptorchid testis: a statistical review. J Urol. Dec 1985;134(6):1071-6. [Medline].
  48. Whitaker RH. Management of the undescended testis. Br J Hosp Med. 1970;4:25.
  49. Martin DC, Menck HR. The undescended testis: management after puberty. J Urol. Jul 1975;114(1):77-9.[Medline].
  50. Rogers E, Teahan S, Gallagher H, et al. The role of orchiectomy in the management of postpubertal cryptorchidism. J Urol. Mar 1998;159(3):851-4. [Medline].
  51. Hrebinko RL, Bellinger MF. The limited role of imaging techniques in managing children with undescended testes. J Urol. Aug 1993;150(2 Pt 1):458-60. [Medline].
  52. Tasian GE, Copp HL, Baskin LS. Diagnostic imaging in cryptorchidism: utility, indications, and effectiveness.J Pediatr Surg. Dec 2011;46(12):2406-13. [Medline].
  53. Rajfer J, Handelsman DJ, Swerdloff RS, et al. Hormonal therapy of cryptorchidism. A randomized, double-blind study comparing human chorionic gonadotropin and gonadotropin-releasing hormone. N Engl J Med. Feb 20 1986;314(8):466-70. [Medline].
  54. De Muinck Keizer-Schrama SM, Hazebroek FW, Drop SL, et al. LH-RH nasal spray treatment for cryptorchidism. A double-blind, placebo-controlled study. Eur J Pediatr. 1987;146 Suppl 2:S35-7. [Medline].
  55. Fedder J, Boesen M. Effect of a combined GnRH/hCG therapy in boys with undescended testicles: evaluated in relation to testicular localization within the first week after birth. Arch Androl. May-Jun 1998;40(3):181-6. [Medline].
  56. Hesse V, Fischer G. Three injections of human chorionic gonadotropin are as effective as ten injections in the treatment of cryptorchidism. Horm Res. 1988;30(4-5):193-7. [Medline].
  57. Lala R, Matarazzo P, Chiabotto P, et al. Combined therapy with LHRH and HCG in cryptorchid infants. Eur J Pediatr. 1993;152 Suppl 2:S31-3. [Medline].
  58. Bica DT, Hadziselimovic F. The behavior of epididymis, processus vaginalis and testicular descent in cryptorchid boys treated with buserelin. Eur J Pediatr. 1993;152 Suppl 2:S38-42. [Medline].
  59. Hadziselimovic F, Girard J, Herzog B, et al. Hormonal treatment of cryptorchidism. Horm Res. 1982;16(3):188-92.
  60. Hadziselimovic F, Herzog B. Treatment with a luteinizing hormone-releasing hormone analogue after successful orchiopexy markedly improves the chance of fertility later in life. J Urol. Sep 1997;158(3 Pt 2):1193-5.
  61. Schwentner C, Oswald J, Kreczy A, et al. Neoadjuvant gonadotropin-releasing hormone therapy before surgery may improve the fertility index in undescended testes: a prospective randomized trial. J Urol. Mar 2005;173(3):974-7.
  62. Sfoungaris D, Mouravas V, Petropoulos A, Filippopoulos A. Prentiss orchiopexy applied in younger age group. J Pediatr Urol. Nov 1 2011
  63. Docimo SG. The results of surgical therapy for cryptorchidism: a literature review and analysis. J Urol. Sep 1995;154(3):1148-52.
  64. Feyles F, Peiretti V, Mussa A, Manenti M, Canavese F, Cortese MG, et al. Improved sperm count and motility in young men surgically treated for cryptorchidism in the first year of life. Eur J Pediatr Surg. Oct 2014;24(5):376-80. [Medline].
  65. Bellinger MF, Abromowitz H, Brantley S, et al. Orchiopexy: an experimental study of the effect of surgical technique on testicular histology. J Urol. Aug 1989;142(2 Pt 2):553-5; discussion 572.
  66. Dixon TK, Ritchey ML, Boykin W, et al. Transparenchymal suture fixation and testicular histology in a prepubertal rat model. J Urol. May 1993;149(5):1116-8.
  67. Kawada T, Yamanaka H, Hasegawa Y. Decreased immunoreactive inhibin and increased FSH levels in cryptorchidism after orchidopexy. Endocr J. Aug 1995;42(4):577-80.
  68. Jordan GH, Robey EL, Winslow BH:. Laparoendoscopic surgical management of the abdominal/transinguinal undescended testicle. J Endourol. 1992;6:159.
  69. Docimo SG. The results of surgical therapy for cryptorchidism: a literature review and analysis. J Urol.1995;154:1148–1152.
  70. Strittmatter T. Testicular Autotransplantation – The Mönchengladbach Experience. Horm Res. 2001;55
Andrologia, Endocrinologia, Sessualità, Spermiogramma

aromatasi e inibitori

L’aromatasi o citocromo P450-19A è l’enzima che interviene nella trasformazione dell’androstenedione in estrone e del testosterone in 17-β-estradiolo (1). Infatti il nome deriva dalla sua attività biochimica che consiste nell’aromatizzazione dell’anello A mediante l’ossidazione di un gruppo metilico. L’aromatasi è presente soprattutto a livello gonadico ma lo si ritrova anche nel fegato, muscoli, cute, tessuto adiposo e a livello encefalico dove svolge un’azione antidepressiva in simbiosi con la dopamina ed, ancora insieme alla DA, un ruolo importante nella regolazione del desiderio sessuale (26-31).    Il gene relativo (CYP19) è localizzato sul cromosoma 15q21.1 (1).

Polimorfismi dell’aromatasi: Il gene che codifica l’aromatasi  (CYP19) è localizzato sul cromosoma 15q21.1. Sono noti vari polimorfismi di CYP19 coinvolti nella regolazione dell’attività dell’aromatasi attraverso la stabilizzazione dell’mRNA, l’aumento della trascrizione o la regolazione post-traduzionale dell’espressione. Tra questi vi è un polimorfismo C>T, localizzato a livello della regione 3’ non tradotta (1672 C→T).  Alcuni studi hanno dimostrato che l’allele C è associato con una scarsa soppressione pituitaria durante la stimolazione ovarica. I pazienti con genotipo CC necessitano un numero di giorni maggiore per ottenere una soppressione pituitaria, rispetto ai pazienti con genotipo TT.

Il polimorfismo 1558 C>T produce un’iperattività dell’enzima con conseguente iperproduzione di estradiolo ed estrone ed aumentato rischio di ginecomastia e ca. endometriale e mammario (22-24).

 Il deficit di aromatasi è una rara malattia, trasmessa come carattere autosomico recessivo. Nelle donne adulte, la sintomatologia clinica comprende ritardo puberale, ipoplasia mammaria e amenorrea primaria, con ovaio policistico. Durante la gravidanza, gli androgeni fetali non si convertono in estrogeni a causa del deficit dell’aromatasi placentare. Quindi si assiste ad un aumento dei livelli di testosterone nel plasma materno e una riduzione dei livelli di estrogeni. Di conseguenza, le donne gravide mostrano irsutismo, che si risolve spontaneamente dopo il parto. Alla nascita le neonate presentano pseudoermafroditismo da virilizzazione dei genitali esterni che si manifesta soprattutto con ipertrofia clitoridea.

Il deficit dell’aromatasi è un tratto distintivo del corredo endocrinologico delle pazienti PCOS e pazienti amenorroiche con anovulazione.

Inibitori dell’aromatasi (AI):  Si suddividono in due gruppi: di tipo steroideo (AIS) e non steroideo. Gli inibitori steroidei si suddividono in irreversibili (AIS tipo I)  e reversibili (AIS tipo II). Gli inibitori irreversibiliI si legano con legame covalente all’aromatasi producendo inattivazione enzimatica; gli inibitori steroidei reversibili si legano in modo reversibile all’aromatasi attraverso l’interazione di un eteroatomo. Gli inibitori dell’aromatasi di terza generazione (letrozolo, anastrazolo) sono tutti del tipo irreversibile.  Gli AI vengono impiegati nel trattamento del carcinoma della mammella e delle ovaie nelle donne in menopausa, terapia dell’endometriosi  e nella stimolazione ovarica controllata (COH).

a) terapia antiblastica: contrariamente alle donne in età fertile, nelle quali la maggior parte degli estrogeni è prodotta dalle ovaie, nelle donne in menopausa, in seguito alla cessazione dell’attività ovarica, la sintesi degli estrogeni è legata all’attività dell’aromatasi che converte l’androstenedione di origine surrenalica in estrone. Pertanto bloccando l’azione di questo enzima è possibile ridurre drasticamente i livelli di estrogeni con conseguente beneficio nel trattamento dei tumori correlati alla presenza di ormoni sessuali (2-5). Un’espressione anomala di aromatasi da parte dei fibroblasti è stata osservata nei Ca mammari e Ca endometriali, nei quali si è osservato un aumento della concentrazione locale di estrogeni (fino a 20 volte rispetto ai valori plasmatici) che promuovono appunto la crescita ormono-dipendente di queste lesioni (3-7).
Con obesità e età aumenta la conversione, catalizzata dall’aromatasi, dell’androstenedione in estrone, questa è una relazione molto importante per l’aumentata incidenza del Ca. dell’endometrio in donne obese e anziane.
Ci sono anche evidenze del ruolo che hanno gli estrogeni nella promozione del tumore alla mammella, è stata dimostrata una maggiore attività dell’aromatasi nel parenchima prossimale alla lesione neoplastica ed un’attività minore nel parenchima distale (7-10).
Per questo motivo nel trattamento dei Ca della mammella, oltre agli antagonisti degli estrogeni, vengono utilizzati anche gli inibitori dell’aromatasi.È stato considerato come obiettivo principale la sopravvivenza libera da eventi (Disease Free Survival, DFS), valutato in tempi diversi che è risultato migliore con IA rispetto a tamoxifene. Studi in metanalisi hanno valutato il rischio di recidiva di cancro al seno: l’uso degli IA è associato ad una riduzione assoluta del rischio del 2,9% ad un follow up mediano di 5 anni (14-17).

b) COH (Iperstimolazione Ovarica Controllata): le ovaie delle pazienti poor responders resistenti alla stimolazione con clomifene e/o gonadotropine possono essere responsive a cicli di stimolazione con HMG e inibitori dell’aromatasi. Il trattamento con inibitori di aromatasi di terza generazione come il letrozolo  (Femara® cpr 2.5 mg) o  l’anastrazolo (Arimidex® cpr 1 mg) o exemestane (Aromasin® cpr 25 mg), produce una riduzione della concentrazione plasmatica di estrogeni conseguente alla ridotta aromatizzazione degli androgeni a livello della granulosa.  Viene a mancare Il feedback negativo estrogenico sulla secrezione gonadotropinica ipofisaria con iperattivazione della stessa come per il clomifene; ma, a differenza del clomifene, non si osserva l’intensa deplezione dei recettori estrogenici tipica della terapia con clomifene. Si viene a mimare un microambiente endocrino molto simile alle donne PCOS che notoriamente sono iperresponsive alla stimolazione ovarica.

c) terapia dell’endometriosi: recentemente gli inibitori dell’aromatasi sono stati proposti per il trattamento dell’endometriosi. È stato suggerito che gli inibitori dell’aromatasi non solo riducono la sintomatologia algica, ma eradicano anche la malattia. Pertanto, tali farmaci potrebbero essere utilizzati o come alternativa alla chirurgia o come mezzo per la prevenzione di recidive nel post-operatorio. Precedenti studi hanno dimostrato che basse dosi di noretisterone acetato (Primolut-Nor® cpr 10 mg)  alleviano la sintomatologia dolorosa nelle donne affette da endometriosi a livello retto-vaginale. Il vantaggio teorico di aggiungere gli inibitori dell’aromatasi al progestinico era rappresentato dalla speranza di “curare” la malattia oltre ad alleviare la sintomatologia dolorosa (19).

La terapia non ha causato modificazioni conseguenze avverse sull’emocromo, markers di funzionalità epatica, funzionalità renale. Terapie effettuate per lunghi periodi hanno evidenziato elevazione della colesterolemia. Non vi sono state variazioni significative della densità minerale ossea sia a livello delle vertebre del rachide lombare che a livello del femore. Le pazienti hanno avuto i seguenti effetti collaterali: aumento di peso, sbalzi d’umore, astenia, dolore osseo e articolare, spotting vaginale, mialgie, cefalea, depressione, vampate di calore e nausea.

d) Virilità e libido nel maschio:  bloccando l’aromatasi è possibile incrementare i livelli di testosterone attraverso tre meccanismi:

  •  il testosterone non viene convertito in estrogeni  per il blocco dell’attività dell’aromatasi, che in vecchiaia risulta aumentata,  e  pertanto una maggiore  quantità di testosterone rimane  in circolo, Gli estrogeni in circolo favoriscono aumentata secrezione di SHBG, obesità e calo della libido.  La somministrazione di testosterone non solo non risolve il problema, ma può aggravarlo in presenza di aromatasi perchè il risultato finale sarà un eccesso di produzione di estrone. La terapia con AI è la soluzione ottimale per ottenere un adeguato livello sierico di testosterone nelle persone anziane.
  • ipersecrezione LH: la ridotta presenza di estrogeni viene interpretata dall’asse HPTA come mancanza di testosterone, di conseguenza aumenta il rilascio di LH che promuove la produzione di nuovo testosterone (9-13).

 Gli inibitori dell’aromatasi sono molto diffusi nel mondo vegetale e appartengono soprattutto al gruppo dei flavonoidi: quercitina (nella mela), apigenina (nel prezzemolo, sedano, carciofo, camomilla e basilico), narigenina (nella parte bianca degli agrumi), resveratrolo (nella buccia e semi dell’uva), oleuropeina (olive), naringina (nel pompelmo), risina (polline, miele, passiflora).  Anche l’indolo-3-ilmetano, DIM,  presente soprattutto nelle crocifere (broccoli, cavoli, verze, ecc.) ha un’ottima e sperimentata azione antiestrogenica (20). Gli inibitori dell’aromatasi sono anche presenti nel melograno, nei funghi champignon bianchi e nel tè. Una certa attività antiaromatasi è stata dimostrata anche per la melatonina (21). Lo zinco è un inibitore naturale dell’aromatasi; la dose quotidiana suggerita è di 30-90 mg/die. I flavoni della soia invece hanno un’azione antiestrogenica diretta senza agire sull’aromatasi.

Effetti collaterali deli inibitori: IA sintetici possono causare una diminuzione della densità minerale ossea, osteoporosi e muscolo-scheletrici, effetti tutti dovuti alla deprivazione estrogenica (31-33)

DOPING: A causa di potenziali effetti sul testosterone ed a causa dell’utilizzo come coadiuvanti nei cicli con steroidi il comitato olimpico ha inserito nella lista delle sostanze considerate dopanti anche gli inibitori dell’aromatasi. Queste sostanze vengono utilizzate dalle atlete insieme agli androgeni per ridurre l’aromatizzazione degli steroidi stessi oppure nelle fasi successive al ciclo per ripristinare la funzionalità gonadica.

References:

  1. Faglia G, Beck-Peccoz P. Malattie del sistema endocrino e del metabolismo (4 ed). Mc Graw-Hill Italia, Milano 2006
  2. ATAC Trialists’ Group. Lancet 2005; 365: 60-2.
  3. Cuzick J et al. Lancet Oncol 2010; 11: 1135–41.
  4. The BIG 1-98 Collaborative Group. N Engl J Med 2009; 361: 766-76.
  5. The Arimidex, Tamoxifen, Alone or in Combination (ATAC) Trialists’ Group. Lancet Oncol 2008; 9: 45-53.
  6. American Society of Clinical Oncology Clinical Practice Guideline: Update on Adjuvant Endocrine Therapy for Women With Hormone Receptor–Positive Breast Cancer. J Clin Oncol 2010; 28: 3784-96.
  7. Colleoni M et al. J Clin Oncol 2011; 20; 29: 1117-24.
  8. National Comprehensive Cancer Network (NCCN). Breast cancer. Version 2.2011. www.nccn.org (accesso del 9.09.2011).
  9. Linee Guida AIOM: Neoplasia della mammella 2010. www.aiom.it/(accesso del 19.09.2011).
  10. ESMO 2011.Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. http://annonc.oxfordjournals.org/content/22/suppl_6/vi12.full.pdf+html (accesso
  11. del 19.09.2011).
  12. NICE 2009. Early and locally advanced breast cancer: diagnosis and treatment.www.nice.org/ (accesso del 19.09.2011).
  13. Gnant M. St. Gallen 2011: summary of the consensud discussion. Breast Care 2011; 6: 136-41.
  14. The ATAC (Arimidex, Tamoxifen Alone or in Combination) Trialists’ Group. Lancet 2002; 359; 2131-39.
  15. The Breast International Group (BIG) 1-98 Collaborative Group. N Engl J Med 2005; 353: 2747-57.
  16. Ring A et al. Cancer Res 2010; 70: 403s– 404s.
  17. Crivellari D et al. J Clin Oncol 2008; 26: 1972-9.
  18. Dowsett et al. J Clin Oncol 2010; 28: 509-18.
  19. Remorgida V, Abbamonte HL, Ragni N, Fulcheri E, Ferrero S. Letrozole and norethisterone acetate in rectovaginal endometriosis. Fertil Steril 2007;88:724-6.
  20. Indole 3 Carbinol – the safer, natural Tamoxifen? www.canceractive.com/cancer-active-page-link.aspx?n=1417.
  21. Martínez-Campa C et al, Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer. 2009 Nov 3;101(9):1613-9.
  22. Reich O, Regauer S., Tempfer CSchneeberger CHuber: Polymorphism 1558 C > T in the aromatase gene (CYP19A1) in low-grade endometrial stromal sarcoma. J.Eur J Gynaecol Oncol. 2011;32(6):626-7.
  23. Izabella Czajka-Oraniec, Wojciech Zgliczynski, Alina Kurylowicz, Michal Mikula and Jerzy Ostrowski: “Association between gynecomastia and aromatase (CYP19) polymorphisms”. European Journal of Endocrinology (2008) 158 721–727
  24. Michael N Okobia et al: “Simple tandem repeat (TTTA) n polymorphism in CYP19 (aromatase) gene and breast cancer risk in Nigerian women”. J Carcinog 2006,5:12
  25. Balthazart J, Foidart A. Brain aromatase and the control of male sexual behavior. J Steroid Biochem Mol Biol. 1993 Mar; 44(4-6):521-40.
  26. Baillien M, Balthazart J. A direct dopaminergic control of aromatase activity in the quail preoptic area. J Steroid Biochem Mol Biol. 1997 Sep-Oct; 63(1-3):99-113.
  27. Balthazart J, Baillien M, Ball GF. Interactions between aromatase (estrogen synthase) and dopamine in the control of male sexual behavior in quail. Comp Biochem Physiol B Biochem Mol Biol. 2002 May;132(1):37-55.
  28. Cornil CA et al. Rapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior. Endocrinology. 2005 Sep; 146(9):3809-20.
  29. Absil P et al. Distribution of DARPP-32 immunoreactive structures in the quail brain: anatomical relationship with dopamine and aromatase. J Chem Neuroanat. 2001 Jan;21(1):23-39.
  30. Schlinger BA, Callard GV. Aromatization mediates aggressive behavior in quail. Gen Comp Endocrinol. 1990 Jul; 79(1):39-53.
  31. Lonning PE. Int.. J. Gynecol. Cancer. 2006; 16 (Suppl. 2):. 518
    [58] Jelovac D, L Macedo, Goloubeva OG, Handratta V, Brodie AM. Cancer Res.. 2005; 65 : 5439.
  32. Marcom PK, Isaacs C, Harris L, Wong ZW, Kommarreddy A, Novielli N, Mann G, Tao Y, Ellis MJ.Breast Cancer Res.. Trattare. 2007; 102 : 43.
  33. Leary A, Dowsett M. fr. J. Cancer. 2006; 95 :. 661  (31-33).
Anatomia, Andrologia, Sessualità, Spermiogramma

Apparato genitale maschile

L’apparato genitale maschile può essere suddiviso schematicamente in:

  • organi genitali esterni : il pene e lo scroto;
  • organi genitali interni: i testicoli, gli epididimi, i vasi deferenti, le vescichette seminali, la prostata, i dotti eiaculatori, le ghiandole bulbo-uretrali di Cowper, l’uretra.

 

ORGANI GENITALI ESTERNI

Pene
Il pene costituisce l’organo deputato ad introdurre gli spermatozoi all’interno della vagina durante il rapporto sessuale. Il pene è formato anteriormente da una parte conoide o testa o glande e da una parte centrale cilindroide chiamata asta o corpo. Sul glande si trova l’apertura esterna dell’uretra dalla quale fuoriescono l’urina e lo sperma. La sua forma e consistenza si possono modificare durante l’erezione, fenomeno che interviene con lo stimolo sessuale, in seguito a stimolazioni nervose. Tale capacità si deve alla sua particolarità anatomica, costituita da tre strutture cilindriche essenzialmente costituite da da lacune vascolari racchiuse da lamine fibrose: il corpo spongioso e i due corpi cavernosi. Il corpo spongioso è localizzato posteriormente, circonda l’uretra e, a livello dell’apice del pene, va a formare il glande. Le due strutture laterali, chiamati corpi cavernosi, presentano centralmente un’arteria longitudinale, a. cavernosa, che, dividendosi in ramificazioni vascolari più piccole, si distribuisce a tutto il tessuto cavernoso. I corpi cavernosi, ma non il corpo spongioso, sono rivestiti da una spessa lamina fibrosa: la fascia vaginale. La lunghezza media del pene è di 8.8 cm in posizione flaccida e 12.9 cm in erezione. 

La tunica albuginea è una struttura costituita da fasci di fibre collagene disposti a formare sia uno strato interno, circolare, sottile, che circonda e si addentra nel tessuto cavernoso, sia uno strato esterno, longitudinale, incompleto, che si assottiglia notevolmente a livello ventrale, a ridosso della spongiosa uretrale. Lo spessore dell’albuginea è variabile con valori compresi fra i 2-3 mm nel pene flaccido e gli 0,5 mm durante l’erezione. Dallo strato profondo dell’albuginea originano i fasci che costituiscono il setto mediano e i pilastri intracavernosi, strutture di sostegno a disposizione radiata. Il parenchima dei corpi cavernosi è costituito da una rete di trabecole, composte da uno scheletro fibroso e da muscolatura liscia, che delimitano degli spazi intercomunicanti rivestiti da endotelio, detti caverne o lacune

Lo strato subalbugineo è costituito da piccole lacune scarsamente comunicanti fra loro, attraversate dal plesso venoso sottotunicale. I corpi cavernosi sono fusi sulla linea mediana, eccetto che nella porzione prossimale, dove si dividono per formare le radici affusolate, dette crura. Le crura sono ancorate fermamente da ciascun lato al periostio dei rami ischiatici e sono rivestite sulla loro superficie caudale dai muscoli striati ischio-cavernosi. Il corpo spongioso impari e mediano, è situato ventralmente, in uno spazio creato dai due corpi cavernosi, ed è attraversato dall’uretra. Nel suo tratto distale, il tessuto spongioso si espande nel glande. La base del glande aderisce alle estremità distali arrotondate dei corpi cavernosi. La porzione prossimale del glande è di diametro appena maggiore rispetto all’asta del pene e sporge posteriormente formando la corona. Il corpo spongioso è anch’esso costituito da tessuto muscolare liscio, ma in esso prevalgono le fibre elastiche. Diversamente dai corpi cavernosi, il corpo spongioso è rivestito solo da una sottile fascia, che ricopre il tessuto sinusoidale, costituita da fibre elastiche e cellule muscolari lisce.  Questa differenza fra albuginea dei corpi cavernosi e fascia del corpo spongioso è finalizzata, sia a limitare la rigidità peniena in erezione, che a permettere la pervietà del lume uretrale durante l’eiaculazione. Una differenza importante rispetto al tessuto cavernoso, è la presenza nel corpo spongioso delle ghiandole parauretrali, situate dorsalmente all’uretra per tutta la sua estensione nella spongiosa. Nel tratto prossimale il corpo spongioso si espande a formare il bulbo dell’uretra. Il bulbo dell’uretra si trova nello spazio perineale superficiale, a contatto con il diaframma urogenitale. Il muscolo bulbocavernoso, striato, ricopre il bulbo dell’uretra ed è responsabile con le sue contrazioni volontarie dell’espulsione dell’urina e dello sperma dal lume. 

La cute che ricopre il pene è sottile, mobile ed espandibile per favorire l’erezione; nella parte distale dell’asta, si ripiega su se stessa a formare il prepuzio, poi continua sotto forma di una lamina sottilissima e aderente che ricopre il glande. Una piccola piega secondaria di cute, il frenulo, ha origine sotto il meato uretrale esterno e si estende lungo il rafe mediano fino alla superficie interna del prepuzio. La fascia superficiale del pene (dartos) è una lamina sottile di tessuto connettivo con fibrocellule muscolari liscie e fibre elastiche. In essa decorrono le arterie peniene superficiali e la vena dorsale superficiale del pene. Al di sotto del dartos si trova uno strato connettivale sottile, la tunica sottofasciale, più prominente alla base del pene. Sotto di essa si trova la fascia peniena profonda (fascia di Buck), lamina sottile, resistente, che avvolge i due corpi cavernosi, aderendo saldamente all’albuginea e il corpo spongioso. La fascia di Buck avvolge anche la vena dorsale profonda, le arterie dorsali profonde  e i nervi dorsali.

Vascolarizzazione peniena

L’irrorazione arteriosa del pene trae origine dal ramo anteriore dell’arteria iliaca interna (a. ipogastrica), che si divide a formare l’arteria glutea inferiore e l’arteria pudenda interna. Quest’ultima origina a livello del grande forame ischiatico e penetra nel perineo attraverso il piccolo forame ischiatico; quindi raggiunge la fossa ischiorettale, attraverso il canale di Alcock, e diventa arteria peniena.

L’arteria pudenda passa attraverso il diaframma urogenitale, quindi si divide nei suoi quattro rami terminali: arteria bulbare, uretrale, dorsale e cavernosa.

L’arteria bulbare irrora il bulbo dell’uretra. L’arteria uretrale decorre longitudinalmente nel tessuto spongioso, fornendo rami al corpo spongioso, all’uretra ed al glande. L’arteria dorsale del pene passa sotto la fascia di Buck, medialmente rispetto ai due nervi dorsali e lateralmente rispetto alla vena dorsale profonda che si posiziona centralmente. Infine l’a. uretrale termina con piccoli rami elicoidali nel glande. Lungo il suo decorso, l’a. uretrale genera alcuni rami circonflessi che circondano i corpi cavernosi e lo spongioso. Dall’a. dorsale del pene si dipartono rami penetranti che attraversano l’albuginea e si suddividono in arterie elicine che si riversano negli spazi lacunari. L’arteria cavernosa penetra nel corpo spongioso alla base del pene e decorre fino all’apice in posizione centrale.

Esiste, tuttavia, un’ampia variabilità dell’anatomia vascolare peniena nei soggetti normali, come, ad esempio, l’origine monolaterale delle due aa. cavernose, l’assenza bilaterale delle aa. cavernose, l’ipoplasia unilaterale di un’arteria dorsale e l’origine aberrante delle arterie cavernose e delle bulbari, comunicazioni fra le cavernose dei due lati, tra le cavernose e le dorsali e tra le cavernose e corpo spongioso, cavernose soprannumerarie e le biforcazioni delle cavernose.

Esistono due categorie di vasi terminali: le arterie nutritizie, che  si risolvono in una rete capillare  (sinusoidi) e le arterie funzionali, che drenano direttamente nelle caverne (arterie elicine).

Le arterie nutritizie decorrono senza sinuosità verso la superficie dei corpi cavernosi, si dividono alcune volte, quindi diventano capillari sinusoidali. Sebbene questi capillari siano sparsi in tutto il tessuto cavernoso, essi appaiono maggiormente sviluppati vicino alla superficie dei corpi, in sede subalbuginea. La rete anastomotica generata da queste venule prende il nome di plesso venulare subalbugineo.

Dalle arterie cavernose originano ramificazioni di prim’ordine, le quali danno origine a loro volta a 3-8 arterie elicine propriamente dette. Il diametro del lume dei rami di primo ordine è del 25-60% inferiore a quello delle cavernose.  Le arterie elicine originanti dalle branche di prim’ordine immediatamente successive sovrappongono i loro territori di irrorazione. Metà delle branche di prim’ordine, dopo aver dato origine alle elicine, continuano il loro decorso e si connettono con il plesso venoso subalbugineo senza ulteriori ramificazioni. Questi “shunt vessels” tengono un decorso più o meno rettilineo.  Le arterie elicine, diversamente dagli “shunt vessels” hanno dei cuscinetti subendoteliali di fibrocellule muscolari lisce, che possono agire come sfinteri.

Le caverne formano una rete anastomizzata estesa a tutto il corpo cavernoso. Le lacune centrali sono ampie (0,5-1 mm a livello distale e 4-5 mm a livello prossimale), mentre quelle periferiche appaiono decisamente più ristrette (0,2 mm). Le venule drenanti i corpi cavernosi originano dovunque dalla superficie dei corpi cavernosi. Tali venule postcavernose (diametro 200 μ) procedono per 0,5-5 mm o più al di sotto della superficie dei seni periferici, ricevono venule dal plesso venoso subalbugineo e quindi si congiungono con altre per generare le vene emissarie (diametro 300-500 μ). Queste vene emissarie cambiano bruscamente il loro decorso penetrando perpendicolarmente nella tunica albuginea e si svuotano nelle vene circonflesse o direttamente nella vena dorsale profonda nei due terzi distali dei corpi cavernosi, e nelle vene cavernose nel terzo prossimale di essi. La vena dorsale profonda è in genere unica e si scarica nel plesso periprostatico di Santorini.

Schematicamente possiamo descrivere tre principali sistemi venosi drenanti il sangue del pene: i sistemi superficiale, intermedio e profondo:

  1. Il sistema superficiale, origina dalla cute del pene e dal tessuto sottocutaneo superficia¬le fino alla fascia di Buck e da luogo alla vena dorsale superficiale. Questa solitamente è un singolo vaso, ma può essere multipla o bifida. Generalmente sbocca in una vena grande safena, ma può svuotarsi nella femo¬rale o nella vena epigastrica inferiore.
  2. Il sistema intermedio è compreso tra la fascia di Buck e la tunica albuginea. Esso drena il glande, la parte distale del corpo spongioso ed i corpi cavernosi. Molte piccole vene rette convergono dal glande e dalla porzione ventrale del corpo spongioso in un plesso retrocoronale. La vena dorsale profonda del pene prende origine da questa convergenza. Essa scorre verso il pube nel solco dorsale compreso tra i corpi cavernosi. 
  3. Il sistema profondo drena la porzione prossimale del corpo spongioso ed una larga parte dei corpi cavernosi. Piccole vene bulbari prendono origine nel tratto prossimale del corpo spongioso e sboccano direttamente nelle vene peniene profonde (cavernose). Vene uretrali posteriori si uniscono alle vene bulbari o drenano direttamente nel plesso pudendo. Anche piccole vene emissarie dai corpi cavernosi sboccano nelle vene profonde. Vene crurali emergono dalla superficie perineale delle crura, decorrono lateralmente e sboccano direttamente nelle vene pudende interne.

 Innervazione

Il pene è provvisto di una ricchissima innervazione  di tipo simpatico (azione vasocostrittrice), parasimpatico (azione vasodilatatrice), sensitivo e motorio. Tutta l’innervazione peniena converge sul plesso ipogastrico inferiore (detto anche plesso pelvico), struttura a forma rettangolare, fenestrata, situata in un piano sagittale il cui punto  centrale  si  localizza  al  livello  dell’apice  delle  vescicole seminali.

L’innervazione ortosimpatica (azione vasocostrittrice) deriva dalla porzione toraco-lombare (T11-L2) del midollo spinale che partecipa al tronco simpatico. Quest’ultimo, decorrendo in sede retroperitoneale, raggiunge il plesso sacrale (o ipogastrico superiore),   al di sotto della biforcazione aortica, che si continua nel plesso ipogastrico medio e nel plesso ipogastrico inferiore (o plesso pelvico). Da qui fuoriescono i nervi ipogastrici che raggiungono i corpi cavernosi del pene. 

L’innervazione parasimpatica (azione vasodilatatrice) origina dalle radici ventrali sacrali S2-S3-S4 da cui  si dipartono i nervi erigendi, contigui ai vasi ipogastrici, i quali terminano nel plesso pelvico. Da tale plesso si sviluppano i nervi cavernosi, che, decorrendo postero-lateralmente alla prostata, raggiungono i corpi cavernosi. 

Le termina­zioni nervose sensitive, particolarmente abbon­danti in corrispondenza del glande e del frenulo del prepuzio, sono in massima parte corpuscolate (corpuscoli tattili di Meissner, corpuscoli ge­nitali di Krause, ecc.). Il controllo nervoso dell’erezione vede impegnati sia il sistema vegetativo (orto-e para-simpatico), che il sistema somatico (sensitivo e motorio). 

 L’innervazione somatica motoria del pene è legata al nervo dorsale del pene, ramo terminale del nervo pudendo (assieme al n. perineale che rappresenta la continuazione diretta del n. pudendo) che fornisce fibre  anche ai muscoli trasverso superficiale del perineo,  ischio-cavernosi e bulbo-cavernoso. Il n. pudendo è un nervo misto includendo, oltre alle fibre motorie, anche fibre parasimpatiche e sensitive. 

Scroto
Il sacco scrotale è una specie di sacchetto muscolo-cutaneo diviso da un setto fibroso centrale  in due compartimenti all’interno dei quali sono alloggiati i testicoli. Il sacco scrotale svolge un compito fondamentale nella termoregolazione dei testicoli, permettendo ad essi di mantenersi ad una temperatura costante di 35 °C circa.  La componente muscolare dello scroto consente allo scroto di distendersi al caldo o contrarsi al freddo o durante esercizi fisici.

Lo scroto è costituito da cute, sottocute e uno strato muscolare chiamato dartos:

  •  cute: ruvida, corrugata e pigmentata, è solcata centralmente, lungo la linea longitudinale mediana, da una lamina fibrosa detta rafe perineale, che si continua in alto sulla faccia inferiore del pene e all’indietro sul perineo (rafe perineale). La cute dello scroto possiede un’importante secrezione sebacea, che ha la funzione di richiamo sessuale e contribuisce ulteriormente al meccanismo della termoregolazione.
  • dartos: è una lamina fibro-muscolare, detta anche muscolo pellicciaio,  composta da un denso strato di tessuto muscolare liscio e fibre collagene ed elastiche che permettono l’ancoraggio dello scroto alla base del pene. Il dartos aderisce intimamente alla faccia profonda della cute dello scroto e  con la sua contrazione, o semplicemente con la sua tonicità, determina il pieghettamento della borsa scrotale e il suo aspetto rugoso. 
  • cremastere - È formato da fascetti muscolari che si trovano nel canale inguinale e nello scroto fra gli strati interni ed esterni della fascia spermatica, circondando i testicoli e il funicolo spermatico. È una estensione del muscolo obliquo interno addominale, si origina anche dal tubercolo pubico e dal legamento inguinale, per poi arrivare al funicolo spermatico. Il muscolo cremastere è innervato dal nervo genito-femorale che fornisce anche rami cutanei ai genitali esterni e alla zona cutanea antero-superiore della coscia. Il n. genito-femorale deriva dalle radici anteriori di  L1-L che confluiscono nel plesso lombare. Di qui il nervo genito-femorale discende in basso parallelamente all’uretere e lateralmente all’a. iliaca comune prima e all’a. iliaca esterna poi; a livello del ligamento inguinale si divide in n. femorale e n. genitale. Il ramo genitale è misto: motorio per il m. cremastere dove è responsabile del riflesso cremasterico e sensitivo per la cute dello scroto. Il ramo femorale origina a livello del ligamento inguinale, raggiunge il triangolo femorale di Scarpa, perfora la fascia cribrosa di Scarpa e va ad innervare la cute antero-superiore della coscia.  


ORGANI GENITALI INTERNI

 Testicoli

I testicoli sono organi ghiandolari, a forma di ovoide appiattito in senso trasversale, avvolti dalla tonaca albuginea,  alloggiati in una sacca cutanea chiamata borsa o sacca scrotale o semplicemente scroto. La posizione dei testicoli al di sotto del canale inguinale non è una situazione originale ma acquisita nel corso dello sviluppo infatti in epoca embrionale essi si sviluppano in addome, ai lati della colonna vertebrale; successivamente i testicoli si portano in basso verso il canale inguinale che attraversano per raggiungere la loro posizione definitiva. La mancata discesa dei testicoli comporta un’ectopia dei testicoli o criptorchidismo.   In genere il testicolo di sinistra discende più in basso rispetto al destro. Hanno  forma ovoidale, misurano 4x3x1,5 cm circa, pesano circa 30 grammi, consistenza parechimatosa. La tonaca albuginea è una membrana fibrosa  costituita da tessuto connettivo fibroso denso con fasci di fibre collagene ad andamento parallelo, resistente e inestensibile, spessa 0,5-1 mm, che ricopre direttamente il testicolo. In corrispondenza del terzo mediano posteriore presenta un notevole ispessimento detto mediastino testicolare o corpo di Higmoro che contiene la rete testis o rete di Haller. All’albuginea aderisce la tunica vaginale, membrana mesoteliale che deriva dal processo vaginale del peritoneo, che nel feto precede la discesa dei testicoli dall’addome nello scroto. Dopo la sua discesa, questa porzione di sacca, che si estende dall’anello inguinale addominale, si oblitera vicino alla parte superiore del testicolo, mentre la porzione inferiore rimane un sacco a fondo chiuso, che riveste la superficie del testicolo e si riflette nella superficie interna dello scroto. Il testicolo è costituto da differenti tipi di cellule, ciascuna dotata di una funzione specifica:

  • gli spermatogoni, cellule staminali precursori degli spermatozoi;
  • le cellule di Leydig, posizionate negli spazi intestiziali fra i tubuli seminiferi, sono responsabili della produzione degli androgeni: testosterone, androstenedione e deidroepiandrosterone sotto lo stimolo dell’ormone LH. L’ormone follicolo-stimolante (FSH) aumenta la risposta delle cellule di Leydig all’LH aumentando il numero di recettori per tale ormone.
  • le cellule di Sertoli, fanno parte del connettivo parietale tubulare, sono dotate di funzione trofica e sono determinanti per la maturazione degli spermatogoni a spermatozoi maturi (spermatogenesi).


Dalla faccia profonda dell’albuginea si dipartono dei setti convergenti verso l’interno del testicolo delimitando circa 300 logge. Ciascuna loggia ha forma piramidale, con la base volta verso la superficie esterna del testicolo e l’apice in corrispondenza del mediastino testicolare. Ciascuna loggia si suddivide in lobuli che contengono  i tubuli seminiferi contorti, le cui estremità si uniscono a formare i tubuli retti che sboccano nella rete testis. Dalla rete testis si dipartono circa 15-20 condottini efferenti che confluiscono a formare l’epididimo. I tubuli seminiferi contorti sono lunghi da 30 cm a 70 cm e occupano il poco spazio a loro disposizione grazie al loro andamento convoluto.

La parete dei tubuli seminiferi è costituita da epitelio pluriseriato detto epitelio germinativo che poggia su una lamina propria. L’epitelio germinativo comprende accanto alle cellule germinali in diverso stato differenziativo le cellule del Sertoli, che sono cellule di sostegno. Le cellule del Sertoli sono cellule di derivazione mesodermica non spermatogeniche che oltre a sostenere e a nutrire gli spermatozoi svolgono importanti funzioni endocrine. Si estendono per tutto lo spessore dell’epitelio con la base che poggia sulla membrana basale e l’apice verso il lume; l’apice presenta delle infossature entro cui sono contenute le teste degli spermatidi in via di sviluppo. Sono riconoscibili per il nucleo triangolare con nucleolo evidente e cromatina dispersa. Le cellule del Sertoli sono unite da complessi giunzionali, tight junctions, che suddividono l’epitelio germinativo in due compartimenti conosciuti come basale e come luminale. Le cellule del Sertoli mediano quindi gli scambi metabolici tra il compartimento luminale degli spermatidi quello sistemico costituendo una barriera ematotesticolare che isola gli spermatidi dal resto dell’organismo, proteggendoli dal sistema immunitario.

 Epididimi

Gli epididimi (dal greco επι sopra e διδυμοσ testicolo)  costituiscono un piccolo rilievo sulla parte superiore di ciascun testicolo. Si presentano come un tubo aggrovigliato; tale struttura funziona come luogo di accumulo e maturazione degli spermatozoi prodotti.

Deferente

Il dotto o vaso deferente è un condotto, lungo dai 40 ai 45 centimetri che collega gli epididimi ad altri organi; dopo aver percorso questo piccolo tubo gli spermatozoi si mescolano con altri liquidi prodotti sia dalle vescichette seminali che dalla prostata; si viene così a formare il liquido seminale.

Vescichette seminali
Queste piccole strutture si trovano posizionate poco sopra ed ai due lati della prostata. Si presentano come piccole tasche secernenti un liquido biancastro ricco di fruttosio. Questo liquido costituisce nutrimento per gli spermatozoi, aumentandone la motilità.

Prostata - La prostata è un organo ghiandolare,  impari e  mediano, situato nella  piccola  pelvi  fra  la  base  vescicale  ed il  diaframma urogenitale, dietro la sinfisi pubica e davanti all’ampolla rettale.  È  attraversata  a  pieno  spessore  dalla  prima  porzione dell’uretra  (uretra  prostatica)  dove  riversa  il  proprio  secreto durante l’eiaculazione. Ha forma a castagna con base superiore e apice  inferiore.  Dal  punto  di  vista  istologico  è  formata  da ghiandole tubulo-alveolari (otricolari) ramificate che per la loro posizione rispetto all’uretra e ai dotti eiaculatori, possono essere raggruppate in un lobo anteriore, lobo medio e due lobi laterali. 

Irrorazione prostatica: La  prostata  riceve  il  flusso  sanguigno  arterioso  dall’arteria vescicale  inferiore  che,  dopo  aver  fornito  piccoli  rami  alla porzione inferiore e posteriore delle vescicole seminali, alla base della vescica e alla prostata, termina con due voluminosi gruppi di vasi prostatici: gli uretrali e i capsulari. I vasi uretrali entrano nella  prostata  a  livello  della  giunzione  vescico-prostatica posterolaterale, assicurando l’apporto arterioso al collo vescicale e  alla  porzione  periuretrale  della  ghiandola.  I  rami  capsulari decorrono lungo  la  parete  pelvica,  nella  fascia  pelvica  laterale, in posizione  posterolaterale  rispetto alla  prostata,  danno  rami che  decorrono  centralmente  e  dorsalmente  per  irrorare  la porzione  periferica  della  ghiandola.  I  vasi  capsulari  terminano con  un  piccolo  plesso  che  irrora  il  pavimento  pelvico.  I vasi  capsulari,  sia  arteriosi  che  venosi  rappresentano  un  repere macroscopico  per  l’identificazione  dei  microscopici  rami  del plesso  pelvico  che  innervano  i  corpi  cavernosi.  Le  vene prostatiche  di  deflusso  costituiscono  il  plesso  di  Santorini.  La vena dorsale profonda fuoriesce dal pene sotto la fascia di Buck tra  i  corpi  cavernosi  e  penetra  nel  diaframma  urogenitale, dividendosi  in  tre  rami  principali: il  ramo  superficiale  e  i  due rami,  destro  e  sinistro,  che  formano  i  plessi  laterali.  Il  ramo superficiale, che decorre tra i legamenti puboprostatici, è situato in posizione  mediana  al  di  sopra  del  collo  vescicale  e  della prostata;  precocemente  visibile  negli  interventi  per  via retropubica,  possiede  rami  comunicanti  sia  con  la  parte superiore  della  vescica  che  con la  fascia  endopelvica.  Questo ramo  superficiale  si  trova  al  di  fuori  della  fascia  pelvica.  Il tronco  comune  e  i  plessi  venosi  laterali  sono  coperti  e  avvolti dalle  fasce  prostatica  ed endopelvica.  I  plessi  venosi  laterali decorrono posterolateralmente  e  sono  in  libera  comunicazione con il plesso pudendo, otturatorio e vescicale. Piccoli rami a lato dei  legamenti  puboprostatici  penetrano  frequentemente  nella parete  della  muscolatura  pelvica.  Questi  plessi  sono  in collegamento  con  altri  sistemi  venosi  così  da  formare  la  vena vescicale  inferiore,  affluente  della  vena  iliaca  interna.  La maggior  parte  dell’irrorazione  dei  corpi  cavernosi  deriva dall’arteria  pudenda  interna.  Bisogna  ricordare  che  le  arterie pudende  possono  originare  dall’arteria  otturatoria,  vescicale inferiore e vescicale superiore e, dato che questi rami aberranti decorrono lungo  la  porzione  inferiore  della  vescica  e  sulla superficie antero-laterale della prostata, possono essere sezionati durante  una  prostatectomia  radicale.  L’interruzione  di  questi vasi può compromettere il flusso arterioso al pene, specialmente nei pazienti anziani con flusso ematico penieno ai limiti inferiori della norma.  

 I nervi per la prostata decorrono al  di  fuori  della  capsula  prostatica  e  della  fascia  del Denonvilliers,  fino  al  punto  d’ingresso  nella  prostata,  ove  perforano  la  capsula. I  rami  per  l’uretra  membranosa  e  per  i corpi  cavernosi  decorrono  anch’essi  al  di  fuori  della  capsula prostatica  dorso-lateralmente,  nella  fascia  pelvica  laterale,  tra prostata  e  retto.  I  fasci  neurovascolari  sono  localizzati  nella fascia  pelvica  laterale  tra  la  fascia  prostatica  e  la  fascia dell’elevatore. A  livello dell’uretra  membranosa  decorrono alle ore 3 e 9. Dopo aver perforato il diaframma urogenitale, passano  dietro  l’arteria  ed il  nervo  dorsale  del  pene  prima  di entrare  nei  corpi  cavernosi.  Sebbene  le  dimensioni  di  questi nervi  siano  microscopiche,  la  loro  localizzazione  può  essere individuata  durante  l’intervento  utilizzando  come  reperi  i  vasi capsulari.  Per  questo  motivo  queste  strutture  vengono  indicate con il nome di banderelle neurovascolari (BNV).  

Dotti eiaculatori
I dotti eiaculatori si trovano all’interno della prostata e sono formati dall’unione dei dotti deferenti con le vescichette seminali; essi confluiscono poi nell’uretra prostatica e peniena.

 

Ghiandole di Cowper
Queste ghiandole si trovano sotto la prostata, ai lati dell’uretra, durante la fase di eccitazione sessuale, secernono una piccola quantità di liquido che partecipa a neutralizzare l’ambiente acido uretrale, permettendo agli spermatozoi eiaculati di vivere più a lungo.

 

Uretra
L’uretra costituisce un condotto decorrente inizialmente, come abbiamo detto, all’interno della prostata, che si continua in un tratto intermedio attraversante il pavimento pelvico ed infine un ultimo tratto che attraversa il corpo spugnoso del pene. Nel canale uretrale si trovano molte ghiandole.

References:

  1. Frank H. Netter, Atlante di anatomia umana, terza edizione, Elsevier Masson, 2007. ISBN 978-88-214-2976-7
  2. L. Testut e A. Latarjet, Trattato di Anatomia Umana, UTET, Torino, 1966,Vol VI: 503-556.
  3. Lepor H, Gregerman M, Crosby R, Mostofi FK, Walsh PC. Precise localization  of  the  autonomic  nerves from  the  pelvic  plexus to  the corpora  cavernosa:  a  detailed  anatomical  study  of  the  adult  male pelvis. J Urol. 1985 Feb;133(2):207-12.
  4. .  Breza  J,  Aboseif  SR,  Orvis BR,  Lue  TF,  Tanagho  EA.  Detailed anatomy  of  penile  neurovascular  structures:  surgical  significance.  J Urol. 1989 Feb; 141(2):437-43.
  5. Halata  Z,  Munger  BL.  The  neuroanatomical  basis for  the protopathic sensibility of the human glans penis. Brain Res. 1986 Apr 23;371(2):205-30.
Andrologia, Spermiogramma

Spermiogramma

Spermiogramma: è l’analisi macroscopica e microscopica del liquido seminale. L’analisi  macroscopica comprende valutazione del volume, aspetto, pH, fluidificazione e viscosità  mentre la fase microscopica intende studiare concentrazione, motilità e morfologia degli spermatozoi al fine di un corretto inquadramento diagnostico del paziente con problemi di fertilità (1-4).

  •  Raccolta campione - Il campione iniziale deve essere raccolto tramite masturbazione dopo un periodo di astinenza sessuale di un tempo minimo di 2 giorni ad un massimo di 7  giorni. Rispettare il periodo di astinenza sessuale permette di paragonare i dati seminali a valori standard di normalità. Inoltre, un’astinenza troppo prolungata provoca accumulo di spermatozoi con possibile riduzione della motilità e alterazione della morfologia, mentre un’astinenza troppo breve può causare la riduzione del volume dell’eiaculato e del numero degli spermatozoi. La raccolta tramite coito interrotto non è una modalità idonea in quanto si può verificare la perdita della prima frazione dell’eiaculato, che di solito contiene la più alta concentrazione di spermatozoi e può comportare una contaminazione del liquido seminale con secrezioni vaginali che possono interferire sulla motilità degli spermatozoi. Essendo il campione molto sensibile a sbalzi di temperatura, è importante una volta compiuta la raccolta evitare escursioni termiche durante il trasporto del campione e prima dell’esame; il liquido seminale  va mantenuto ad una temperatura stabile (non inferiore a 20°C e non superiore a 30°C) fino al momento dell’analisi.

 

 

  • La fluidificazione del liquido seminale segue l’iniziale coagulazione; avviene in 15-30 minuti.  Se dopo 60 minuti la fluidificazione non è completa, si parla di fluidificazione ritardata, quadro compatibile con disturbi prostatici. La misurazione viene effettuata facendo percolare il liquido lungo le pareti della provetta osservando la qualità del liquido contro una sorgente luminosa.
  • Viscosità -  La misurazione della viscosità avviene facendo gocciolare il liquido da una pipetta, osservando come le gocce dovrebbero susseguirsi in maniera ritmica una dopo l’altra. Una diminuzione della viscosità può associarsi a scarsa componente cellulare spermatica mentre l’aumento della viscosità visibile con la formazione di filamenti può derivare da uno stato di flogosi delle vie spermatiche.
  • Volume:  v.n. 1.5-6 ml; il liquido seminale è secreto dalle ghiandole seminali (prostata, vescicole seminali e ghiandole bulbo-uretrali di Cooper). Il volume >6 ml è rappresentato come iperposia e si ritrova spesso in condizioni di flogosi delle vie seminali; un volume seminale <1.5 ml è definito come ipoposia e si riscontra in caso di ostruzione o agenesia dei dotti deferenti, occlusione o agenesia delle vescicole seminali, eiaculazione retrograda parziale, ipogonadismo e problemi immunologici.
  • Concentrazione degli spermatozoi: il numero degli spermatozoi è valutato al M.O. utilizzando la camera di Makler (Sefi Medical Instrument, Haifa, Israel). In caso di criptozoospermia però, è necessario ricorrere alla camera di Neubauer che nel quadrato centrale contiene 25 piccoli quadrati ognuno dei quali contiene 20 celle in cui contare gli spermatozoi.   Per l’esame con la camera di Neubauer, in base al numero di spermatozoi che si sono apprezzati con la camera di Makler,  si scelgono le due diluizioni più opportune.  Il valore ottenuto con l’apposita formula (es: Diluizione 1+4 (1:5) C = (N/n) × 0.25; C = concentrazione spz mil/ml, N = numero totale di spermatozoi contati, n = numero di righe contate) viene poi moltiplicato per il volume totale, così da ottenere il numero totale di spermatozoi nell’eiaculato. Il numero medio di spermatozoi totali nel liquido seminale dovrebbe essere 40.000.000-200.000.000 con variazioni fisiologiche del 10-30% fra un esame e l’altro ma negli ultimi decenni si assiste ad una progressiva diminuzione della popolazione spermatozoaria a livello mondiale.  Tale declino è dovuto a condizioni di vita sedentaria, cattiva alimentazione, obesità, diabete, inquinamento ambientale. Nel 2010 la WHO (WHO laboratory manual for the examination and processing of human semen) realizzò delle linee guida per la valutazione della concentrazione degli spermatozoi nel liquido seminale esprimendo un cut-off di normalità fra 15 e 250 milioni di spz/ml e proponendo quindi la seguente classificazione:
    • spz/ml  <156 : oligospermia lieve
    • spz/ml  <106: oligospermia media
    • spz/ml <5.000.000:  oligospermia severa
    • pochi e rari spermatozoi: criptospermia
    • spz/ml >250×106 polispermia 
  • morfologia La morfologia è uno dei parametri che meglio riflette l’integrità e la funzionalità degli spermatozoi. Essa è strettamente correlata al tasso di concepimento spontaneo e al tasso di fertilizzazione in vitro. Lo spermatozoo maturo è costituito da una parte anteriore, ovoidale, chiamato testa, seguita da una porzione chiamata collo,  un tratto intermedio e dal tratto finale o coda. La testa contiene  il nucleo a cui è appoggiato anteriormente l’acrosoma che contiene gli enzimi necessari alla penetrazione dello spz nell’ovocita. La morfologia spermatica viene valutata a fresco, appena effettuata la liquefazione completa del liquido seminale, al M.O. in contrasto di fase con ingrandimento a 200-400X  dopo aver strisciato e colorato con Papanicolau il preparato su vetrino. Si contano le percentuali di anomalie su 200 spz e le anomalie vengono suddivise in anomalie della testa, della coda e del pezzo intermedio. Nel 2010 il WHO (WHO laboratory manual for the examination and processing of human semen) ha proposto come valori di normalità una percentuale di spermatozoi normali >14%, al di sotto di tali parametri si tratta di teratozoospermia. Tra le alterazioni morfologiche desta particolare attenzione la presenza di spz a testa rotonda (globozoospermia) a causa  dell’assenza della membrana acrosomiale e dell’acrosina, entrambe fondamentali per la penetrazione dello spz. nell’ovocita (5).

  • motilità: è valutata al M.O. ad ingrandimento 20X in diversi campi della camera di Makler. Nell’ultima versione delle linee guida WHO si attribuiscono agli spz tre classi di mobilità: motilità progressiva, motilità non progressiva e spermatozoi immobili. Viene considerato normale un campione seminale con una percentuale >32% di spz dotati di motilità rettilinea o con motilità totale >40% (5,6).
  • pH: in condizioni di normalità il valore seminale del pH è alcalino (range 7.2-7.8). Valori >8 indicano flogosi genitale mentre valori <7 sono presenti in caso di contaminazione del campione o in caso di stenosi dei deferenti o ipotrofia o stenosi delle vescicole seminali.  
  • Leucociti  (v.n.  <1×106/ml) 

ESAMI BIOCHIMICI per lo studio della funzionalità delle ghiandole accessorie: 

  1. D-fruttosio - la concentrazione seminale di fruttosio (v.n. 200-600 mg/dl)  è il miglior marker della funzionalità delle vescicole seminali. Dagli studi finora pubblicati, emergono conclusioni discordanti su una correlazione diretta fra la concentrazione del fruttosio seminale e i parametri funzionali degli spz nei pazienti infertili (29-45). 
  2. L-Carnitina e acetil-carnitina seminale: secrete dall’epididimo, assumono un importante ruolo per la produzione di energia,  importante nel metabolismo e nella motilità degli spermatozoi. L’aggiunta di carnitine al medium per la crioconservazione dello sperma sembra utile per conservare la motilità degli spz (46-54). 
  3. Zinco - secreto dalle cellule secretorie della prostata, metallo traccia essenziale per almeno 200 enzimi,  coinvolto nel metabolismo di lipidi, proteine, carboidrati e acidi nucleici. Ha una funzione antiossidante, battericida diretta e indiretta, e stabilizzante della membrana cellulare e la cromatina nucleare degli spermatozoi. In caso di ipertrofia prostatica la secrezione di zinco è immutata o leggermente aumentata mentre risulta nettamente diminuita in caso di adenocarcinoma prostatica. Ci sono dati contrastanti fra i livelli dello zinco nel plasma seminale e i parametri di concentrazione e funzionalità degli spermatozoi mentre tutti si è concordi nell’affermare che lo zinco è indice di funzionalità prostatica (22-28). 
  4. γ-glutamil-transpeptidasi (GT): è un enzima la cui principale funzione è di intervenire nel metabolismo del glutatione, per favorire l’eliminazione delle sostanze tossiche da parte del fegato. I tessuti umani in cui è maggiormente presente la gamma-GT sono rene, pancreas, fegato intestino e prostata. La concentrazione nel liquido seminale (v.n. 5-36 mU/ml) è indice di funzionalità prostatica. 
  5. Fosfatasi acida prostatica (PAP):  glicoproteina secreta dalla prostata e presente nel liquido seminale. I valori di riferimento sono inferiori a 3,7 μg/l La concentrazione di fosfatasi acida prostatica risulta incrementata in tutte le patologie prostatiche:  carcinoma prostatico, prostatiti acute e iperplasia prostatica benigna. La fosfatasi acida prostatica risulta, inoltre, incrementata in corso di metastasi ossee, di ritenzione urinaria e in seguito ad alcune manovre diagnostiche, quali massaggi prostatici, esplorazioni rettali o procedure endoscopiche. In medicina legale, la ricerca della fosfatasi prostatica è effettuata per accertare un avvenuto stupro, giacché la sua presenza in vagina rappresenta la prova di un recente rapporto sessuale.
  6. Gliceril-fosforil-colina (GPC): secreta dall’epitelio epididimario, sembra avere un ruolo stabilizzante sul DNA dello spermatozoo e sulla pressione osmotica endoluminale. La secrezione di GPC è  direttamente correlata alla secrezione di testosterone e DHT; in caso di ostruzione del deferente si osserveranno solo minime tracce di GPC nel liquido seminale (21-22).   

 

 

 

Biochimica liquido seminale
parametro sede di produzione valori normali
Fruttosio  vescichette seminali 200-600 mg/dl
prostaglandine  vescichette seminali  10-35 μg/ml
fosfatasi acida  prostata <3,7 μg/l
γ-glutamil-transpeptidasi prostata  5-36 mU/ml
acido citrico prostata 200-600 mg/dl
zinco prostata 2-40 mg/ml
L-carnitina epididimo 0.2-0.4 μmol/ml
glicero-fosforil-colina epididimo  30-70 mg/dl
glucosidasi neutra epididimo

Citofluorimetria: Per valutare i parametri seminali abbiamo a disposizione le camere di conta e il microscopio; la concentrazione viene valutata utilizzando la camera di Makler o di Neubauer, con le quali noi contiamo solo una piccola parte delle cellule presenti nell’eiaculato ed estrapoliamo pertanto la concentrazione sulla base di una notevole approssimazione; la mobilità, risente fortemente della soggettività dell’operatore che deve discriminare in maniera molto approssimativa i differenti tipi di motilità nemaspermica e la percentuale degli spermatozoi con le diverse tipologie di mobilità; un dato meno soggettivo è rappresentato dalla valutazione della morfologia, ma possiamo contare massimo 100-200 spermatozoi per vetrino, che dal punto di vista statistico sono un numero scarsamente rappresentativo se rapportato alle centinaia di milioni che possono essere presenti nell’eiaculato. Un aiuto in questo senso è venuto verso la fine degli anni ’70 dalla citofluorimetria, inizialmente utilizzata quasi esclusivamente per indagini immuno-onco-ematologiche e successivamente anche per lo studio degli spermatozoi.  La citofluorimetria permette di analizzare campioni cellulari statisticamente accettabili, riducendo in questa maniera il fenomeno della variazione. Il principio su cui si basa la citofluorimetria può essere schematizzato nel seguente modo: una sospensione cellulare viene fatta aspirare dallo strumento, queste cellule si disporranno in un flusso unicellulare che viene intercettato da un raggio laser convogliato da una lente, questo raggio subirà un destino diverso sulla base delle caratteristiche cellulari andando quindi ad essere intercettato da filtri e fotomoltiplicatori che in ultima analisi trasformeranno il segnale elettrico in diagrammi computerizzati.

  La citofluometria a flusso ci permette di valutare i seguenti parametri:
  • concentrazione spermatozoi e cellule rotonde;
  • identificazione degli anticorpi anti-spermatozoo;
  • integrità nemaspermica;
  • vitalità nemaspermica;
  • integrità della membrana;
  • valutazione permeabilità e stabilitàdella membrana;
  • integrità acrosomiale;
  • funzionalità mitocondriale;
CASA (computer-aieded sperm analysis): Analizzatori seminali automatici che consentono di valutare la percentuali di spz mobili e la loro velocità media. E’ noto che molti fattori sono in grado di ridurre l’efficienza degli strumenti CASA, come la preparazione del campione e la concentrazione degli spermatozoi (Davis & Katz, 1992; Mortimer, 1994a, b), per cui è opportuno consultare le linee guida per l’utilizzo di questi apparecchi (Mortimer   et al., 1995; European Society of Human Reproduction and Embriology, 1996). Anche rispettando i controlli di qualità e una cura procedurale rigorosa, fino ad oggi non è stato possibile determinare con il CASA la concentrazione degli spermatozoi, per la difficoltà di distinguere gli spermatozoi dai detriti (European Society of Human Reproduction and Embriology, 1996).  il CASA può essere impiegato nella routine diagnostica del laboratorio per monitorare la concentrazione degli spermatozoi motili progressivi.
MEP-metod (multi exposure photography): analizzatore che utilizza la stroboscopia applicata alla fotografia per valutare oggettivamente la motilità degli spermatozoi (4-6). Il campione di seme, posto in una camera di 10-μm è illuminato con   luce pulsata generata da uno stroboscopio a xenon (pulse intervallo: 160 m/sec., esposizione: 1 sec.) e fotografato attraverso un M.O. a contrasto di fase.
Laser light scattering (laser diffraction): può  analizzare in meno di 1 minuto peso e diametri di un gran numero di microparticelle (da 100 nm a diversi mm) sospese in acqua, emulsioni e sospensioni. 

Test di vitalità:

  1. test all’eosina: si mescolano parti uguali di soluzione al 5% di  eosina Y e liquido seminale; gli spermatozoi danneggiati o morti si colorano in rosso mentre quelli vitali non si colorano.  
  2. swelling test (HOS, test iposmotico): Questo metodo valuta la percentuale di spermatozoi con alterazioni funzionali della membrana cellulare correlate con il grado di integrità del DNA.  Si attua mescolando 0.1 ml di liquido seminale con 1 ml di soluzione di swelling (ipotonica rispetto al liquido seminale) ed incubando per almeno 30 minuti a 37° C (non più di 45 minuti). L’acqua, per osmosi, passa dalla soluzione ipotonica di Swelling all’interno degli spermatozoi ed in seguito a ciò gli spz. normali  si rigonfieranno   mentre quelli con funzione alterata della membrana non si rigonfieranno. Gli spz con rigonfiamento (spz normali)  vengono immersi in una soluzione isotonica che li riporterà a dimensioni normali e saranno utilizzati per la fecondazione in vitro. 
  3. TUNEL test  (Terminal deoxynucleotidyl transferase dUTP Nick end Labeling) su liquido seminale per la ricerca di frammentazioni del DNA degli permatozoi: Il test di frammentazione del DNA spermatico o Tunel test, insieme al test  Sperm Chromatin Dispersion (SCD) è un ottimo metodo per valutare, in termini di percentuale, il grado di frammentazione del DNA dei singoli spermatozoi osservati a M.O. ad altissima risoluzione. Nonostante l’elevato grado di attendibilità, una delle principali limitazioni di questa tecnica è che, una volta processati, gli spermatozoi non possono essere utilizzati per la fecondazione in vitro.  Inoltre i risultati possono richiedere fino ad una settimana di tempo (7-18).
  4. Valutazione della reazione acrosomiale indottaa seguito dell’interazione fra l’acrosoma e la zona pellucida, si assiste alla reazione acrosomiale che inizia con l’ingresso di ioni calcio nel citoplasma e l’alcalinizzazione di quest’ultimo. Entrambi questi fenomeni possono essere artificialmente indotti mediante lo ionoforo del calcio A23187.  Nel rimodellamento citoplasmatico gli istoni sono sostituiti dalla protamina (6).
  5. Test di penetrazione nella zona pellucida di ovociti umani: si mettono a contatto gli spz con la zona pellucida, tagliata mediante microdissettori, di ovociti non fertilizzabili conservati in soluzione salina concentrata per diversi mesi derivati da biopsie ovariche, cadaveri o FIV. Si contano gli spz legati alla zona pellucida. 
  6. Test di penetrazione in oocita di hamster zona-free -  La fusione spermatozoo-oocita nel test di penetrazione in oocita di hamster è la stessa che avviene nell’uomo, poiché la fusione con la membrana vitellina dell’oocita inizia dalla membrana plasmatica che riveste il segmento equatoriale dello spermatozoo umano in cui è avvenuta la reazione acrosomiale. Il test differisce dalla situazione fisiologica, invece, per l’assenza della zona pellucida. Il test dell’oocita di hamster si basa sulla reazione acrosomiale, che avviene spontaneamente negli spermatozoi incubati in vitro per un periodo prolungato di tempo. Poiché questa procedura è meno efficiente di quanto non lo siano i processi biologici in vivo, e può coinvolgere anche meccanismi diversi, avviene spesso di ottenere risultati falsi negativi di pazienti i cui spermatozoi non riescono a superare il test dell’oocita di hamster ma riescono a fecondare gli oociti umani in vitro ed in vivo (World Health Organization, 1986).
  7. Test all’arancio di acridina:  gli spz con DNA denaturato si coloreranno in verde.

ALTRI ESAMI SU LIQUIDO SEMINALE

Citologia spermatica su agoaspirato testicolare: permette di studiare l’epitelio germinativo del testicolo e le fasi del processo di gametogenesi.  L’agoaspirazione viene eseguita con un sottile ago, in ambulatorio, previa una anestesia da contatto (spray) con minimo discomfort del paziente. I quadri che emergono sono: normale, sindrome a cellule di Sertoli, blocco maturativo spermatogoniale/spermatocitico, ipospermatogenesi. 

FISH (Sperm Fluorescence In Situ Hybridizations): permette di evidenziare aneuploidie e diploidie spermatiche che sono molto  frequenti nei pazienti con oligoastenospermia grave (12).

Spermiocultura -  Un’infezione del tratto genitale maschile può provocare sterilità sia per azione diretta sugli spermatozoi (riduzione della motilità per effetto dell’adesività batterica o per azione di sostanze spermiotossiche) che attraverso vari meccanismi indiretti. Le infezioni delle vie genitali costituiscono, quindi, una delle cause più frequenti di riduzione della capacità riproduttiva maschile, soprattutto in quelle forme definite “silenti”, asintomatiche, non curate per l’assenza di segni clinici soggettivi; l’intervallo tra il contagio sessuale e la comparsa di infertilità è spesso di molti anni. Prima di raccogliere lo sperma, il paziente deve urinare, dopodiché deve lavarsi le mani ed il pene con sapone, e sciacquare via ogni traccia di sapone ed asciugarsi con un asciugamano pulito. Il contenitore per il liquido seminale deve essere sterile, ed il tempo intercorrente tra raccolta e l’inizio dell’analisi al laboratorio di microbiologia non deve superare le tre ore (19).  I principali agenti patogeni sono:

  1. Neisseria gonorrhoeae: Dopo un breve periodo di incubazione, 4-5 giorni, più dell’80% dei maschi presenta i sintomi dell’infezione primaria. Le uretriti gonococciche acute sono caratterizzate da abbondante essudato cremoso giallastro: nelle forme croniche l’essudato è meno tipico ed abbondante.
  2. Chlamydia trachomatis: è causa di malattie gravi sia per gli scarsi sintomi, sia per le cicatrizzazioni che provoca e che comportano importanti sequele specie per la fertilità. Essa è responsabile di oltre il 50% delle uretriti non gonococciche e di gran parte di quelle post-gonococciche. L’uretrite da Chlamydia può complicarsi con orchi-epididimite, prostatite, vescicolite, tutte causa di anomalie nella produzione, nella funzione e nel trasporto degli spermatozoi, che possono anche comportarsi come veicolo dell’infezione. L’esame viene eseguito su tampone uretrale.
  3. Mycoplasmi - Nell’uomo possono determinare uretriti, prostatiti e prostato-vescicoliti subacute, spesso accompagnate da emospermia; sono stati anche descritti casi di epididimiti e balaniti. Tra gli agenti infettivi i Mycoplasmi sono al primo posto come causa di infertilità maschile.
  4. Trichomonas vaginalis - Colonizza l’uretra, la prostata, le vescicole seminali, l’epididimo ed i testicoli. Spesso si è portatori asintomatici del parassita, potendo manifestare una leggera uretrite che normalmente non induce il paziente ad un controllo medico.

————————————————————————————————————————————————

Autore: FULVIO CESARONI, seminologo ed embriologo

References:

  1. World Healt Organization (2010) WHO laboratory manual for the examination and processing of human semen. Fifth edit. Cambridge University Press, Cambridge.
  2. Manuale di laboratorio della WHO per l’esame del liquido seminale umano  e dell’interazione tra spermatozoi e muco cervicale. Volume 37, N. 1, 2001. ISSN 0021-2571 Coden: AISSAW 37 (N. 1) 1-124 (2001)
  3. Cooper TG, Noonan E, von Eckardstein S, et al. (2010). “World Health Organization reference values for human semen characteristics”. Hum. Reprod. Update16 (3): 231–45.
  4. Trevor G Cooper, CH Yeung: Asian J Androl  1999 Jun; 1: 29-36
  5. Makler A: Use of the Elaborated Multiple Exposure Photography (Mep) Method in Routine Sperm Motility Analysis and for Research Purposes. Fertil Sterl 1980;33,2:160-166
  6. Makler A, David R, Blumenfed Z and Better OS: Factors affecting sperm motility. VII. Sperm viability as affected by change of pH and osmolarity of semen and urine specimens.Fertil Steril. 1981 Oct;36(4):507-11.
  7. Kamidono S et al: Study on Human Spermatozoal Motility: Preliminary Report on Newly Developed Multiple Exposure Photography Method. Andrologia 1983;15,2:111–119
  8. Lozano G.M., Bejarano, I., Espino, J., González, D., Ortiz, A., García, J.F., Rodríguez, A.B., Pariente, J.A. (2009). “Density gradient capacitation is the most suitable method to improve fertilization and to reduce DNA fragmentation positive spermatozoa of infertile men”. Anatolian Journal of Obstetrics & Gynecology 3(1): 1-7.
  9. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992). “Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation”. J Cell Biol. 119 (3): 493–501. doi:10.1083/jcb.119.3.493. PMC 2289665Freely accessible. PMID 1400587.
  10. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995). “In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note”. Hepatology. 21 (5): 1465–8.
  11. Negoescu A, Lorimier P, Labat-Moleur F, Drouet C, Robert C, Guillermet C, Brambilla C, Brambilla E (1996). “In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations”. J Histochem Cytochem. 44 (9): 959–68. doi:10.1177/44.9.8773561. PMID 8773561.
  12. Negoescu A, Guillermet C, Lorimier P, Brambilla E, Labat-Moleur F (1998). “Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity”. Biomed Pharmacother. 52 (6): 252–8.
  13. Sharma RKSabanegh EMahfouz RGupta SThiyagarajan AAgarwal ATUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010 Dec;76(6):1380-6. doi: 10.1016/j.urology.2010.04.036. Epub 2010 Jun 22.
  14. Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016 Feb; 33(2):291-300. Epub 2016 Jan 16.
  15. Sergerie M, Laforest G, Bujan L, Bissonnette F, Bleau G.  Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod. 2005 Dec; 20(12):3446-51. Epub 2005 Aug 5.
  16. Zhang LH, Qiu Y, Wang KH, Li J, Zhang MX, Liu J, Jia YF, Wu AH, Zhang AD, Wang LG. Zhonghua Yi Xue Za Zhi. [Measurement of sperm DNA integrity by sperm chromatin dispersion test and TdT-mediated dUTP nick end labeling assay]. 2009 Apr 14; 89(14):970-2. 
  17. Sergerie MBleau GTeulé RDaudin MBujan L[Sperm DNA integrity as diagnosis and prognosis element of male fertility]. Gynecol Obstet Fertil. 2005 Mar;33(3):89-101.
  18. Zhang LH, Qiu Y, Wang KH, Wang Q, Tao G, Wang LG. Measurement of sperm DNA fragmentation using bright-field microscopy: comparison between sperm chromatin dispersion test and terminal uridine nick-end labeling assay.  Fertil Steril. 2010 Aug; 94(3):1027-32. Epub 2009 Jun 7.
  19. Structural damage to nuclear DNA in mammalian spermatozoa: its evaluation techniques and relationship with male infertility. Fraser L. Pol J Vet Sci. 2004; 7(4):311-21. 
  20. Giovenco P, Dondero F: “Importanza del dosaggio della glicerilfosforilcolina (GPC) nel liquido seminale umano. Atti delle giornate Endocrinologiche Pisane, 1979.
  21. Wallace I P, Wales R G, White I G: “The respiration of the rabbit epididymis and its synthessis of glycerylphosphorylcoline “. Austral J Biol Sc 1966;19:849-856 
  22. Lin YC, et al: Seminal plasma zinc level and sperm motion characteristics in infertile sample. Ghang Gung Med J 2000;23,5:260-266
  23. Liu R Z et al: Seminal plasma zinc level may be associated with the effect of cigarette smoking on sperm parameters. J Int Med Res 2010;38,3:923-928
  24. Omu A E et al: Indications of the mechanisms involved in improbe sperm parameters by zinc therapy. Med Princ Pract 2008;17:108-116
  25. Rucker R B, Fascetti A J, Keen C L: Trace minerals. In: Kaneko J J, Harvey J W, Bruss M L: Clinical Biochemestry of domestic animals, Elsevier 2008, pagg 686-90 
  26. Vallee  B. L.,  Falchuck  K.H.:  The  biochemical  basis  of  zinc  physiology. Physiological review, 73 (1): 80-118; 1993.
  27. Wong W.Y., Flik G., Groenen P. M. W. et al.: The impact of calcium, magnesium, zinc  and  copper  in  blood  and  seminal  plasma  on  semen  parameters  in  men. Reproductive Toxicology, 15: 131-136; 2001.
  28. Colagar  A.H.,  Marzony  E.T.,  Chaichi  M.J.:  Zinc  levels  in  seminal  plasma  are associated with sperm quality in fertile and infertile men. Nutrition Research, 29: 82-88; 2009.
  29. Koji Nakashima et al: Determination of seminal fructose using d-fructose dehydrogenase. Clinica Chimica Acta 1985;151;3:307-310
  30. Lipshultz LI, Howards SS: Infertility in the Male. Second edition. Edited by DK Marshall. St. Louis, MO, Mosby-Year Book, Inc., 1991, pp 133-135, 194, 209
  31. Andrade-Rocha FT Seminal fructose levels in male infertility: relationship with sperm characteristics.Int Urol Nephrol. 1999;31(1):107-11.
  32. Gonzales GF, Villena A. Influence of low corrected seminal fructose levels on sperm chromatin stability in semen from men attending an infertility service. Fertil Steril. 1997 Apr; 67(4):763-8. 
  33. Gonzales GF. Function of seminal vesicles and their role on male fertility.  Asian J Androl. 2001 Dec; 3(4):251-8. 
  34. Buckett W M, Lewis-Jones D I: FRUCTOSE CONCENTRATIONS IN SEMINAL PLASMA FROM MEN WITH NONOBSTRUCTIVE AZOOSPERMIA. Arch Androl J Reprod System 2002;48,2:23-27
  35. Schirren C. Textbook of practical Andrology. Schireng A, G.Hamburg Germany. 1983. Pp.17–31.
  36. Rajalakhshmi  M,  Sherma  R  S,  David  GFX, Kapur  MM.Seminal  fructose  in  normal  and  infertile  men.  Contraception 1989;39:299–306.
  37. Videla  E,  Blanco  AM, Galli  ME, Fernández-Collazo  E. Human  seminal  biochemistry:  fructose,  ascorbic  acid, citric acid,  acid  phosphatase  and  their  relationship  with  sperm count. Andrologia 1981;13(3):212–4.
  38. Gonzales GF, Villena  A. Influence  of  low  corrected  seminal fructose  levels  on  sperm  chromatin  stability  in  semen  from men  attending         an  infertility         service.  Fertil.  Steril 1997;67:763–8.
  39. Saeed  S,  Khan  FA,  Rehman  SB,  Khan  DA,  Ahmad  M. Biochemical  parameters  in  evaluation  of  oligospermia.  J  Pak Med Assoc 1994;44:137–40.
  40.  Aslam  M.,  Khan  FA, Saeed  S,  Ahmed A. The  concentration  of semen  fructose, zinc  and  plasma reproductive  hormones  in  subfertile men. Pak J Med Res 1996;35(4):157–60.
  41. Zopfgen  A, Priem  F, Sudhoff  F, Jung  K, Lenk  S,  Loening SA,   et  al.  Relationship  between  semen  quality  and  the seminal  plasma  components  carnitine,  alpha-glucosidase, fructose, citrate  and  granulocyte  elastase  in  infertile  men compared  with  a  normal  population.  Hum  Reprod 2000;15(4):840–5.
  42. Dieudonne  O, Godin  PA,  Van-Langendonckt  A, Jamart  J, Galanti  L.  Biochemical  analysis  of  the  sperm and  infertility. Clin Chem Lab Med 2001;39:455–7.
  43. Andrade-Rocha  FT.    Seminal  fructose  levels  in  male infertility:  relationship  with  sperm  characteristics. Int  Urol Nephrol 1999;31(1):107–11.
  44. Biswas  S,  Ferguson  KM,  Stedronska  J.  Fructose  and  hormone levels  in  semen,  their  correlations  with  sperm  counts  and motility. Fertil Steril 1987;30:200–4.
  45. Gonzales GF. Function of  seminal  vesicles  and  their  role  on male fertility. Asian J Androl 2001;3(4):251–8.
  46. De Rosa M, Boggia B, Amalfi B, Zarrilli S, Vita A, Colao A, Correlation between seminal carnitine and functional spermatozoal characteristics in men with semen dysfunction of various origins.  Lombardi G.Drugs R D. 2005; 6(1):1-9.
  47. Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa.

    Jeulin C, Lewin LM.Hum Reprod Update. 1996 Mar-Apr; 2(2):87-102.
  48. Stradaioli GSylla LZelli RChiodi PMonaci M.   Effect of L-carnitine administration on the seminal characteristics of oligoasthenospermic stallions. Theriogenology. 2004 Aug;62(3-4):761-77.
  49. Stradaioli G, Sylla L, Zelli R, Verini Supplizi A, Chiodi P, Arduini A, Monaci M. Seminal carnitine and acetylcarnitine content and carnitine acetyltransferase activity in young Maremmano stallions. Anim Reprod Sci. 2000 Dec 29; 64(3-4):233-45. 
  50. Changes in carnitine and acetylcarnitine in human semen during cryopreservation. Grizard G, Lombard-Vignon N, Boucher D.Hum Reprod. 1992 Oct; 7(9):1245-8.
  51. L-carnitine Supplemented Extender Improves Cryopreserved-thawed Cat Epididymal Sperm Motility.
    Manee-In S, Parmornsupornvichit S, Kraiprayoon S, Tharasanit T, Chanapiwat P, Kaeoket K.Asian-Australas J Anim Sci. 2014 Jun; 27(6):791-6.
  52. Effect of L-carnitine administration on the seminal characteristics of oligoasthenospermic stallions.

    Theriogenology. 2004 Aug;62(3-4):761-77.
  53. Zhang XD [The role of seminal vesicles in male reproduction and sexual function]. Zhonghua Nan Ke Xue. 2007 Dec;13(12):1113-6.
  54. Gonzales GF. Function of seminal vesicles and their role on male fertility. Asian J Androl. 2001 Dec; 3(4):251-8.