Endocrinologia, PMA

Ringiovanimento ovarico con PRP (Platelet Rich Plasma)

Il ringiovanimento delle ovaie è una procedura che può creare nuovi follicoli nelle ovaie di donne che non sono in grado di concepire a causa della menopausa precoce, senescenza ovarica precoce (POF), età materna avanzata o scarsa riserva ovarica (1-4).

Gli ovociti si formano solo durante la vita fetale e alla 20a settimana di vita intrauterina il pool follicolare è già interamente costituito. Da quel momento i follicoli cominciano un processo di inesorabile progressivo esaurimento. Alla nascita molti ovociti sono già andati incontro ad apoptosi e i follicoli primordiali sono presenti in numero variabile tra 700.000 e 1 milione. Questo numero rappresenta la riserva ovarica di ogni donna in epoca prepuberale. Fisiologicamente si assiste poi ad una progressiva riduzione numerica dei follicoli primordiali a causa di fenomeni degenerativi che ne determinano la perdita. Nella donna adulta, il tasso di consumo di follicoli non è costante ma accelera in modo esponenziale con il progredire dell’età.  Il patrimonio follicolare a 40 anni è ridotto del 75% ed alla menopausa si registrano <1.000 follicoli/ovaio ed iporesponsivi.   I tassi di natalità vivi della FIVET diminuiscono fino a zero dopo i 42 anni e non si hanno gravidanze cliniche dopo i 46 anni. La deplezione follicolare avviene probabilmente a causa di alterazioni delle funzioni immunitarie indotte, in pubertà,  da persistenza funzionale del timo oppure, dopo i 33 anni, indotte dall’età (5-8).

Molte donne con riserva ovarica ridotta o esaurita, non sono in grado o non vogliono, per ragioni personali, ricorrere all’ovodonazione o adottare un figlio. Per queste categorie di persone la tecnica di neoogenesi è l’unica chance per soddisfare il desiderio di gravidanza.

I primi studi sulla possibilità di ottenere nuovi ovociti dalle cellule epiteliali ovariche sono stati pubblicati nel 2005 (9). I nuovi follicoli si sviluppano nelle ovaie in circostanze normali e gli ovociti prodotti sono idonei a rendere possibile una gravidanza spontanea. Tuttavia, occorre considerare la possibilità di un concepimento spontaneo coincidente con quel periodo. Infatti possono avvenire concepimenti spontanei anche a 49 anni, ma la probabilità statistica effettiva di un simile vento è veramente minima e gravata da un’elevata incidenza di malformazioni genetiche fetali a causa dell’età avanzata della gravida.

Il rationale della tecnica è sfruttare il potenziale clinico delle cellule staminali pluripotenti presenti nelle gonadi adulte per indurre neoformazione di gonociti sotto lo stimolo locale di fattori di crescita. In vivo i fattori di crescita sono espressi da molte cellule dell’organismo umano ed in particolar modo da piastrine e globuli bianchi, particolarmente in caso di traumi contusivi o  lacerazioni, per riparare il danno tissutale. Tra molte altre importanti funzioni biologiche ed immunologiche, i fattori di crescita promuovono neoangiogenesi, tessuto connettivo e nervoso mediante l’attivazione delle cellule staminali normalmente presenti in tutti i tessuti (10-12).

Le cellule staminali possono, sotto lo stimolo biologico appropriato, trasformarsi in qualsiasi tipo di cellula del corpo umano, compresi gli ovociti. La presenza di cellule staminali nelle ovaie e la loro trasformazione in ovociti maturi è stata dimostrata nei topi dai ricercatori di Harvard. Le cellule staminali sono anche state dimostrate essere presenti nell’ovaio umano, quindi è possibile che essi possano essere trasformati in ovociti da fattori di crescita contenuti nei leucociti e nelle piastrine che sono state iniettate nell’ovaio.

Le iniezioni di fattori di crescita, utilizzati per molti tipi di trattamenti medici, sono chiamati PRP (Platelet Rich Plasma) o PDGF (fattori di crescita derivata dalla piastrina).

I fattori di crescita PDGF (Platelet-Derived Growth Factor = Fattori di Crescita Piastrinici) presenti in molte cellule ma  in elevata concentrazione nelle piastrine insieme a molti altri fattori di crescita (1-9).  Il PDGF è un mitogeno importante per le cellule del tessuto connettivo e per alcuni altri tipi di cellule. Si tratta di una molecola dimerica composta da catene di polipeptidi A e B, strutturati in modo disolfuro, che si combinano con gli omo- e gli eterodimeri. Le isoforme di PDGF esercitano gli effetti cellulari legando e attivando due recettori strutturati legati alla proteina della tirosina-chinasi, indicando il recettore α e il recettore β. L’attivazione dei recettori PDGF porta alla stimolazione della crescita cellulare, ma anche ai cambiamenti nella forma cellulare e nella motilità; PDGF induce la riorganizzazione del sistema di filamenti attinici e stimola la chemiotassi, cioè un movimento di cellule diretto verso un gradiente di PDGF. In vivo, il PDGF ha un ruolo importante durante lo sviluppo embrionale e durante la guarigione della ferita. Inoltre, l’eccessiva attività di PDGF è stata implicata in diverse condizioni patologiche. La tesi oncogena del simian sarcoma virus (SSV) è legata alla catena B di PDGF e la trasformazione SSV comporta la stimolazione autocrina da una molecola simile a PDGF. Allo stesso modo, la sovrespressione di PDGF può essere coinvolta nella stimolazione di crescita autocrina e paracrina dei tumori umani. La sovraattività di PDGF è stata inoltre implicata in condizioni non maligne caratterizzate da una maggiore proliferazione cellulare, come l’aterosclerosi e le condizioni fibrotiche (10-15).

I geni per l’espressione delle catene A e B del PDGF sono posizionati rispettivamente sui cromosomi 7 e 22.

La sintesi è spesso aumentata in risposta a stimoli esterni, come l’esposizione a bassa tensione di ossigeno, a trombina, al trattamento con glucocorticoidi, invecchiamento dei fibroblasti, traumi, stimolazione con vari fattori di crescita e citochine. L’espressione di PDGF-A aumenta anche nelle cellule muscolari lisce dell’utero umano durante l’ipertrofia fisiologica della gravidanza (16-19).

Come molte altre citochine, il PDGF si lega a α-2-macroglobulina. Questa interazione, che coinvolge PDGF-BB ma non PDGF-AA regola la quantità di PDGF disponibile per l’interazione con i recettori (20-22).

In vivo, il PDGF ha un ruolo importante durante lo sviluppo embrionale e durante la guarigione delle ferite. L’eccessiva attività di PDGF è stata implicata in diverse condizioni patologiche. può essere coinvolta nella stimolazione di crescita autocrina e paracrina dei tumori umani (22-27).

L’utilizzo del concentrato piastrinico (PRP – plasma ricco di piastrine) per uso non trasfusionale, in particolare nella medicina rigenerativa o in dermatologia è una pratica ormai consolidata a livello internazionale. E’ utilizzato da molti anni, con successo, come rigenerante di tessuti danneggiati ad esempio in chirurgia maxillo-facciale e odontostomatologica, in oculistica e nella terapia di ulcere cutanee croniche. L’applicazione per il ringiovanimento ovarico è piuttosto recente (28-34).

La procedura: si prepara il PRP mediante centrifugazione di un prelievo ematico autologo allo scopo di eliminare siero ed eritrociti.  Il preparato si inietta nello stroma ovarico con iniezione transvaginale ecoguidata o in corso di laparoscopia in paziente sedata con propofol.  Dal momento che il PRP è ricavato da sangue autologo, non ci può essere trasmissione di trasmissioni di alcuna malattia e poiché non ci sono sostanze chimiche sintetiche,  la possibilità di una reazione allergica è estremamente improbabile (35-39). 

Nelle donne in amenorrea la procedura può essere effettuata in qualsiasi giorno mentre nelle donne mestruate è consigliabile effettuare l’inizione di PRP durante il flusso mestruale o subito dopo.

Per il monitoraggio post-intervento si procede con il dosaggio sierico di  AMH (ormone antiMullerian), β-inibina, FSH, LH e Estradiolo a intervalli mensili in donne che non hanno mestruazioni e durante il flusso mestruale nelle donne mestruate per un periodo di sei mesi. Se i livelli di AMH aumentano, mentre i livelli di FSH, LH e estradiolo diminuiscono, ci sono prove obiettive di ringiovanimento ovarico.  È importante ricordare che qualsiasi effetto terapeutico di fattori di crescita può richiedere 3-6 mesi prima di rendersi evidente. Anche se si osserva la rigenerazione ovarica, la gravidanza non può necessariamente verificarsi, in quanto potrebbero esserci altri fattori che potrebbero interferire con il concepimento naturale. AMH <1 ng/ml e Inibina B <45 pg/ml assumono un valore prognostico negativo. A differenza dell’FSH, AMH e Inibina B restano costanti nelle varie fasi del ciclo ovarico e non sono influenzati da patologie o farmaci.

Conta dei follicoli antrali e calcolo del volume ovarico
E’ un’indagine ecografica transvaginale, molto semplice da eseguire, poco costosa e ripetibile, che rappresenta comunque un ottimo indice per la valutazione della riserva ovarica.
L’indagine deve essere eseguita nei primi giorni del ciclo mestruale (dal 3° al 5° giorno) quando è possibile osservare i piccoli follicoli denominati antrali, in ogni ovaio. Sono follicoli aventi un diametro di circa 2-6 mm.
In condizioni di buona fertilità si osservano in genere >5 follicoli antrali in ogni ovaio e ciascun ovaio ha un volume superiore ai 7 cm3; la presenza di un numero di follicoli inferiore a 5 e di un volume inferiore ai 7 cm3 potrebbe far sospettare una riduzione della riserva ovarica.

Per le applicazioni cutanee ora è disponibile la terapia PRP TRANSDERM in elettroporazione. Attraverso una nuovissima apparecchiatura ad alta tecnologia, tra le poche ad essere autorizzate dalla FDA come alternativa elettronica alle iniezioni, è possibile trasferire i Growth Factors senza iniezioni e senza perdere efficacia nella terapia. Tale applicazione ovviamente non è utilizzabile nella PRP.

Caratteristiche delle pazienti da sottoporre a trattamento con PRP: 

1. donne in menopausa o perimenopausa di età <50 anni.
2. Donne aventi una scarsa riserva ovarica, menopausa precoce (POF), bassi livelli di AMH, β-inibina, elevati livelli sierici di FSH.

Un giorno recente è richiesto 2,3 o 4 livelli di FSH, LH e Estradiolo, nonché un livello di ormone anti-morbillo. Se non hai eseguito questi test e vivete a distanza da New York City, richiederli dal tuo medico o il nostro ufficio ti invierà una prescrizione e le prove saranno effettuate presso una comoda stazione di tracciamento del sangue di Quest Laboratory, da cui può ottenere risultati in linea. Quando la tua domanda viene riesaminata, un membro del personale di Advanced Fertility Services ti contatterà, per programmare un appuntamento per la valutazione e la consultazione iniziali. La consultazione preliminare includerà un sonogram vaginale per valutare la tua attuale riserva ovarica e per vedere se le ovaie sono in una posizione favorevole per la procedura di iniezione ovarica. Il sonogramma mostrerà anche se esistono cisti ovariche o altre condizioni patologiche che possono influenzare negativamente le prestazioni della procedura.

Rischi per il paziente: Il trattamento con PRP non presenta effetti collaterali, cionondimeno una preparazione impropria e non conforme ai requisiti di qualità e sicurezza imposti dalla normativa di riferimento può rappresentare un rischio per il paziente. Un procedimento di lavorazione inadeguato potrebbe esporre al rischio di contaminazione batterica e/o infezioni. Inoltre occorre tener presenti i rischi correlati alla tecniche di approccio chirurgico dell’iniezione intraovarica.

Tale terapia può essere eseguita solo in strutture autorizzate all’utilizzo di emoderivati. Il PRP,  anche definito gel di piastrine (gdp), in base alla normativa nazionale attualmente vigente può essere preparato solo nei servizi trasfusionali (ST). La preparazione e l’utilizzo del prodotto sono, infatti, disciplinati dalla Legge n. 219/2005 che regola la donazione, la manipolazione e lo stoccaggio del sangue e dei suoi derivati e dal Decreto Legislativo 20 dicembre 2007, n. 261.

References:

  1. Mathe G. Immunity aging. I. The chronic perduration of the thymus acute involution at puberty? Or the participation of the lymphoid organs and cells in fatal physiologic decline? Biomed Pharmacother. 1997;51:49–57. doi: 10.1016/S0753-3322(97)87726-8.
  2. Bukovsky A, Presl J. Ovarian function and the immune system. Med Hypotheses. 1979;5:415–36. doi: 10.1016/0306-9877(79)90108-7.
  3. Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB. Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol. 2004;2:20
  4. Bukovsky A, Keenan JA, Caudle MR, Wimalasena J, Upadhyaya NB, Van Meter SE. Immunohistochemical studies of the adult human ovary: possible contribution of immune and epithelial factors to folliculogenesis. Am J Reprod Immunol. 1995;33:323–40.
  5. Bukovsky A, Caudle MR, Svetlikova M, Wimalasena J, Ayala ME, Dominguez R. Oogenesis in adult mammals, including humans: a review. Endocrine. 2005;26:301–16.
  6. Bukovsky A, Caudle MR. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol. 2012;10:97. doi: 10.1186/1477-7827-10-97.
  7.  Bukovsky A. How can female germline stem cells contribute to the physiological Neo-oogenesis in mammals and why menopause occurs? Microsc Microanal. 2011;17:498–505
  8.  Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals. Anat Rec (Hoboken) 2011;294:1284–306.
  9. Oogenesis in cultures derived from adult human ovaries. Bukovsky A, Svetlikova M, Caudle MR
    Reprod Biol Endocrinol. 2005 May 5; 3():17.
  10. Carl-Henrik Heldin, Bengt Westermark  Mechanism of Action and In Vivo Role of Platelet-Derived Growth Factor. Physiological Reviews Published 10 January 1999 Vol. 79 no. 4, 1283-1316
  11.  Bukovsky A, Caudle MR. Mammalian neo-Oogenesis from Ovarian Stem Cells in Vivo and in Vitro. In: Schatten H, editor. Cell and Molecular Biology and Imaging of Stem Cells. Hoboken: Wiley; 2014. pp. 67–136.
  12. Bukovsky A, Virant-Klun I. Adult Stem Cells in the Human Ovary. In: Simon C, Pellicer A, editors. Stem Cells in Reproductive Medicine: Basic Science & Therapeutic Potential. London: Informa Healthcare; 2007. pp. 53–69.
  13. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–4.
  14. ABBOUD, H. E. Role of platelet-derived growth factor in renal injury. Annu. Rev. Physiol. 57: 297–309, 1995.
  15.  ABBOUD, H. E., E. POPTIC, AND P. DICORLETO. Production of platelet-derived growth factor-like protein by rat mesangial cells in culture. J. Clin. Invest. 80: 675–683, 1987.
  16.  ABE, J.-I., J.-O. DEGUCHI, T. MATSUMOTO, N. TAKUWA, M. NODA, M. OHNO, M. MAKUUCHI, K. KUROKAWA, AND Y. TAKUWA. Stimulated activation of platelet-derived growth factor receptor in vivo in balloon-injured arteries. A link between angiotensin II and intimal thickening. Circulation 96: 1906–1913, 1997.
  17.  AFINK, G. B., M. NISTE´ R, B. H. G. J. STASSEN, P. H. L. J. JOOSTEN, P. J. H. RADEMAKERS, E. BONGCAM-RUDLOFF, E. J. J. VAN ZOELEN, AND S. MOSSELMAN. Molecular cloning and functional characterization of the human platelet-derived growth factor a receptor gene promoter. Oncogene 10: 1667–1672, 1995.
  18. ÅHLE´ N, K., AND K. RUBIN. Platelet-derived growth factor-BB stimulates synthesis of the integrin a2-subunit in human diploid fibroblasts. Exp. Cell Res. 215: 347–353, 1994.
  19. ALEXOPOULOS, E., D. SERON, R. B. HARTLEY, AND J. S. CAMERON. Lupus nephritis: correlation of interstitial cells with glomerular function. Kidney Int. 37: 100–109, 1990.
  20. ALMAN, B. A., D. A. GREEL, L. K. RUBY, M. J. GOLDBERG, AND H. J. WOLFE. Regulation of proliferation and platelet-derived growth factor expression in palmar fibromatosis (Dupuytren contracture) by mechanical strain. J. Orthop. Res. 14: 722–728, 1996.
  21. ALMAN, B. A., S. P. NABER, R. M. TEREK, W. A. JIRANEK, M. J. GOLDBERG, AND H. J. WOLFE. Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures. J. Orthop. Res. 13: 67–77, 1995.
  22. Bukovsky A, Svetlikova M, Caudle MR. Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol. 2005;3:17
  23. ALPERS, C. E., C. L. DAVIS, D. BARR, C. L. MARSH, AND K. L. HUDKINS. Identification of platelet-derived growth factor A and B chains in human renal vascular rejection. Am. J. Pathol. 148: 439–451, 1996.
  24. ALPERS, C. E., R. A. SEIFERT, K. L. HUDKINS, R. J. JOHNSON, AND D. F. BOWEN-POPE. Developmental patterns of PDGF Bchain, PDGF-receptor, and a-actin expression in human glomerulogenesis. Kidney Int. 42: 390–399, 1992.
  25. ANDERSSON, M., A. O¨ STMAN, G. BA¨ CKSTRO¨ M, U. HELLMAN, C. GEORGE-NASCIMENTO, B. WESTERMARK, AND C.-H. HELDIN. Assignment of interchain disulfide bonds in platelet-derived growth factor (PDGF) and evidence for agonist activity of monomeric PDGF. J. Biol. Chem. 267: 11260–11266, 1992. 1
  26. ANDERSSON, M., A. O¨ STMAN, J. KREYSING, G. BA¨ CKSTRO¨ M, M. VAN DE POLL, AND C.-H. HELDIN. Involvement of loop 2 of platelet-derived growth factor-AA and -BB in receptor binding. Growth Factors 12: 159–164, 1995.
  27. ANDERSSON, M., A. O¨ STMAN, B. WESTERMARK, AND C.-H. HELDIN. Characterization of the retention motif in the C-terminal part of the long splice form of platelet-derived growth factor A-chain. J. Biol. Chem. 269: 926–930, 1994.
  28. ANDREW, J. G., J. A. HOYLAND, A. J. FREEMONT, AND D. R. MARSH. Platelet-derived growth factor expression in normally healing human fractures. Bone 16: 455–460, 1995.
  29. ANSEL, J. C., J. P. TIESMAN, J. E. OLERUD, J. G. KRUEGER, J. F. KRANE, D. C. TARA, G. D. SHIPLEY, D. GILBERTSON, M. L. USUI, AND C. E. HART. Human keratinocytes are a major source of cutaneous platelet-derived growth factor. J. Clin. Invest. 92: 671– 678, 1993.
  30. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [
  31. ANTONIADES, H. N., M. A. BRAVO, R. E. AVILA, T. GALANOPOULOS, J. NEVILLE-GOLDEN, M. MAXWELL, AND M. SELMAN. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J. Clin. Invest. 86: 1055–1064, 1990
  32. ANTONIADES, H. N., T. GALANOPOULOS, J. NEVILLE-GOLDEN, C. P. KIRITSY, AND S. E. LYNCH. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts. Proc. Natl. Acad. Sci. USA 88: 565–569, 1991.
  33. ANTONIADES, H. N., C. D. SCHER, AND C. D. STILES. Purification of human platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 76: 1809–1812, 1979.
  34. ASSOIAN, R. K. Anchorage-dependent cell cycle progression. J. Cell Biol. 136: 1–4, 1997.
  35. ATALIOTIS, P., AND M. MERCOLA. Distribution and functions of platelet-derived growth factors and their receptors during embryogenesis. Int. Rev. Cytol. 172: 95–127, 1997.
  36. ATALIOTIS, P., K. SYMES, M. M. CHOU, L. HO, AND M. MERCOLA. PDGF signalling is required for gastrulation of Xenopus laevis. Development 121: 3099–3110, 1995.
  37. AUBERT, J.-D., P. D. PARE´ , J. C. HOGG, AND S. HAYASHI. Plateletderived growth factor in bronchiolitis obliterans-organizing pneumonia. Am. J. Respir. Crit. Care Med. 155: 676–681, 1997.
  38. BALLAGI, A. E., A. ISHIZAKI, J.-O. NEHLIN, AND K. FUNA. Isolation and characterization of the mouse PDGF b-receptor promoter. Biochem. Biophys. Res. Commun. 210: 165–173, 1995.
  39. BANAI, S., Y. WOLF, G. GOLOMB, A. PEARLE, J. WALTENBERGER, I. FISHBEIN, A. SCHNEIDER, A. GAZIT, L. PEREZ, R. HUBER, G. LAZAROVICHI, L. RABINOVICH, A. LEVITZKI, AND S. D. GERTZ. PDGF-receptor tyrosine kinase blocker AG1295 selectively attenuates smooth muscle cell growth in vitro and reduces neointimal formation after balloon angioplasty in swine. Circulation 97: 1960–1969, 1998.
  40. BAR, R. S., M. BOES, B. A. BOOTH, B. L. DAKE, S. HENLEY, AND M. N. HART. The effects of platelet-derived growth factor in cultured microvessel endothelial cells. Endocrinology 124: 1841–1848, 1989.
  41. BARLEON, B., F. TOTZKE, C. HERZOG, S. BLANKE, E. KREMMER, G. SIEMEISTER, D. MARME´ , AND G. MARTINY-BARON. Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1. J. Biol. Chem. 272: 10382–10388, 1997.
  42. BARNHILL, R. L., M. XIAO, D. GRAVES, AND H. N. ANTONIADES. Expression of platelet-derived growth factor (PDGF)-A, PDGF-B and the PDGF-alpha receptor, but not the PDGF-beta receptor, in human malignant melanoma in vivo. Br. J. Dermatol. 135: 898–904, 1996.
  43. Martin C. Robson,  Derek A. Dubay,  Xue Wang, Michael G. Franz:  Effect of cytokine growth factors on the prevention of acute wound failure. Wound Repair Regeneration 2004;12,1:38-43
  44. Hesham El-Sharkawy et al: Platelet-Rich Plasma: growth factors and pro- and anti-inflammatory properties. J Periodont 2007;78,4:661-669
  45. A. K. Gupta and J. L. Carviel. (2017) Meta-analysis of efficacy of platelet-rich plasma therapy for androgenetic alopecia. Journal of Dermatological Treatment 28:1, 55-58.
  46. F. Mussano, T. Genova, L. Munaron, S. Petrillo, F. Erovigni and S. Carossa. (2016) Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets 27:5, 467-471.
  47. Lorenzo G. Segabinazzi, Aime M. Friso, Sebastian B. Correal, André M. Crespilho, José Antonio Dell’Aqua, Jordi Miró, Frederico O. Papaand Marco Antonio Alvarenga. (2017) Uterine clinical findings, fertility rate, leucocyte migration, and COX-2 protein levels in the endometrial tissue of susceptible mares treated with platelet-rich plasma before and after AI. Theriogenology 104, 120-126.
  48. Kostis I. Nikolopoulos, Vasilios Pergialiotis, Despina Perrea and Stergios K. Doumouchtsis. (2016) Restoration of the pubourethral ligament with platelet rich plasma for the treatment of stress urinary incontinence. Medical Hypotheses 90, 29-31.
    Online publication date: 1-May-2016.
  49. E.L. Chrysanthopoulou, V. Pergialiotis, D. Perrea, S. Κourkoulis, C. Verikokos and S.K. Doumouchtsis. (2017) Platelet rich plasma as a minimally invasive approach to uterine prolapse. Medical. Hypotheses 104, 97-100.
  50. Elham A. Masoudi, João Ribas, Gaurav Kaushik, Jeroen Leijten and Ali Khademhosseini. (2016) Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration. Current Stem Cell Reports 2:1, 33-42.
  51. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–4. doi: 10.1126/science.1251141.
  52. Gougeon A. Is neo-oogenesis in the adult ovary, a realistic paradigm? Gynecol Obstet Fertil. 2010;38:398–401. doi: 10.1016/j.gyobfe.2010.04.013
  53. Antonin Bukovsky Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases. Reprod Biol Endocrinol. 2015; 13: 10.
Embriologia, Gravidanza, PMA

Impianto endometriale dell’embrione in cicli PMA: fisiopatologia

Nella terapia della sterilità, molti fattori negativi (impervietà tubarica in primis, ostilità cervicale, quindi disovulazione e dispermia)  sono stati superati con le tecniche IVF-ET ed ICSI che permettono di by-passare i problemi tubarici e cervicale e ottenere embrioni di buona qualità nel 95% dei casi ma con tassi di gravidanza del 12-25% per ciclo di trattamento (1-3).  La bassa percentuale di gravidanza è dovuto al fallimento dell’impianto che attualmente è il principale problema su cui discutere. Nella gestione delle tecniche PMA, per aumentare l’outcome gravidico si è puntato sul miglioramento della qualità embrionale,  recettività endometriale e sincronizzazione fra transfer embrionale e maturità endometriale adeguata (endometrio “in fase”). Recentemente si è introdotto il concetto di trasferimenti “omogenei” (“homogeneous transfers”, HT), in cui il trasferimento omogeneo è definito come il trasferimento di embrioni con una morfologia simile  (1-4). 

Qualità embrionale:  molti progressi sono stati ottenuti nei centri PMA per ottimizzare il pregnancy rate migliorando la qualità embrionale e scegliendo gli embrioni di migliore qualità.

Anche se non esiste una regola fissa e uguale per tutte le pazienti, è opinione diffusa che il transfer al 5-6° giorno, allo stadio di blastula, sembra aumentare l’outcome gravidico per diversi motivi: gli embrioni con patologie genetiche non si sviluppano oltre il 5° giorno e quindi si assiste ad una spontanea selezione embrionale che può essere ulteriormente raffinata mediante PGD (Preimplantation Genetic Diagnosis). Inoltre al 5-6° giorno l’endometrio è altamente ricettivo, sicuramente più che al 3° giorno,  ed infine  la possibilità di migliorare l’attecchimento mediante hatching della zona pellucida che non può essere effettuata su embrioni a 4 cellule  (5-14).

 La percentuale di aborto ovulare è più elevato dopo il trasferimento di embrioni a 2-4 cellule rispetto agli embrioni allo stadio di ≥8 cellule  ed è significativamente aumentato quando l’embrione presenta >20% di blastomeri frammentati  mentre diminuisce significativamente in caso di embrioni con precoce primo cleavage  che risulta essere il più forte indicatore di qualità embrionale nelle tecniche IVF (15-20). La frammentazione blastomerica è da valutare, al microscopio invertito a ingrandimento 400X, 44 ± 2 h dopo l’inseminazione o la microinezione. La frammentazione blastomerica è stata valutata come segue: A = nessuna frammentazione; B = 1-20% in volume di frammenti anucleati; C = 21-50% in volume di frammenti anucleati; e D = >50% in volume di frammenti anucleati (21-28).

Ovviamente la scelta di effettuare il transfer al 5-6° giorno dipende anche dall’età della paziente,  dalla sua storia clinica, dal numero di embrioni ottenuti e dalla sincronia con la maturazione endometriale (29-30).

Recettività endometriale: la bassa percentuale  gravidanze in evoluzione (25%) rispetto al numero di embrioni ottenuti è da addebitare a numerosi fattori come la presenza di idro- e sacto-salpinge, infezioni pelviche, PID, obesità, diabete mellito, cardiopatie, fattori immunologici e fattori psico-somatici, ma è la recettività endometriale tout-court il principale fattore limitante il successo delle tecniche PMA, il cul de sac in cui vanno ad restringersi le probabilità di successo delle tecniche ART (10-14).  

L’endometrio esprime una finestra di recettività fra il 15° e il 19° giorno di un ciclo spontaneo e dal 4° al 9° giorno dopo il picco LH o somministrazione di HCG dei cicli stimolati.   Moderne tecniche hanno permesso di individuare esattamente la finestra di  recettività in cicli non stimolati  in modo da ottimizzare il transfer embrionale in caso di ovodonazione e nei casi di embryo-transfer differiti (15-17). La finestra di impianto è correlata a modificazioni morfologiche endometriali, modificazioni ormonali e biochimiche, modificazioni recettoriali, secrezioni di citochine e prostaglandine in un insieme armonico e strettamente collegato (18-29).

Modificazioni morfologiche (decidualizzazione): 

  • L’epitelio superficiale si ripiega e le cellule si distendono e mostrano un citoplasma più chiaro, alcune cellule sviluppano nuclei grossi ed ipercromici-poliploidi.
  • Le ghiandole endometriali subiscono un fenomeno di Iperplasia morfologica e funzionale.
  • Le cellule stromali si decidualizzano passando da una conformazione affusolata o a  stella ad una forma globosa, rotondeggiante, aumento di volume, accumulo citoplasmatico di glicogeno e granuli lipidici.
  • neo-angiogenesi e congestione dei sinusoidi vascolari  
  • in caso di gravidanza iniziale, anche extra-uterina,   a carico delle cellule epiteliali secretive delle ghiandole endometriali, si osservano particolari modificazioni (fenomeno di Arias-Stella) dovute all’azione dell’HCG.
 Modificazioni biochimiche locali:
  • comparsa di integrine, MMP (Matrix Metallo-Proteinasi): Collagenasi, Gelatinasi e Stromelisine, enzimi litici di origine endometriale e fibronectina di orgine embrionale, che favoriscono l’annidamento.
  • prostaglandine intracellulari PGF2α, PGE2, PGI2 e PGD2
  • La prolattina:  è prodotta soprattutto nella fase luteale tardiva;  a basse concentrazioni risulta essere luteotrofica, mentre a dosi elevate  è luteolitica (30-33).

Citochine e fattori di crescita:  la complessità degli eventi di impianto e placentazione è resa evidente dall’elevato numero e dalla varietà delle citochine e dei fattori di crescita espressi dalle cellule stromali e ghiandolari in fase luteale e soprattutto durante la “finestra di impianto” ed implicati in questi processi. Alcuni sono fondamentali, altri non sono indispensabili. I difetti di espressione e azione di queste citochine e fattori di crescita provocano diminuzione della recettività endometriale e il fallimento o diminuzione delle percentuali di impianto. Di notevole importanza risultano i membri della famiglia gp130 come l’interleuchina-11 (IL-11) e il fattore di inibizione della leucemia (LIF), la superfamiglia del fattore di crescita di trasformazione beta (TGFbeta), incluse le attivine, i fattori stimolanti colonia (CSF), le interleuchine IL-1 e IL-15. Nuovi dati stanno emergendo anche per il ruolo di una serie di chemiochine (citochine chemioattrattive) sia nel richiamo di specifici leucociti nei siti di impianto che nella differenziazione dello stroma endometriale  (34-47).

  • LIF (Leukemia Inhibitory Factor): è una leuchina della classe IL-6 che inibisce la differenziazione cellulare. E’ stato dimostrato che la LIF, regolata dalla proteina p53, agevola l’impianto nel modello del topo e probabilmente negli esseri umani (56). La LIF umana ricombinante potrebbe contribuire a migliorare il tasso di impianto nelle donne con infertilità inspiegata (57). LIF è normalmente espressa nel trofectoderma dell’embrione in via di sviluppo mentre il suo recettore LIFR è espresso in tutta la massa cellulare interna (58,59). 
  • IL-11 (Interleuchina-11): citochina appartiene alla famiglia dell’interleuchina 6 e del LIF. La sua secrezione dalle cellule stromali avviene soprattutto nella fase luteale tardiva ed è stimolata  dal progesterone con il concorso di diversi fattori di crescita. IL-11 promuove la sintesi delle proteine implicate nei processi flogistici  e promuove la proliferazione locale di linfociti. E’ perciò direttamente interessata nella immunologia della gravidanza (60-66). Il difetto di secrezione locale di IL-11 comporta una difettosa differenziazione delle cellule stromali e conseguente deficit di impianto (67-74)
  • IL-6 (Interleuchina-6)
  • HBEGF, Heparin Binding Epidermal Growth Factor
  • Colony Stimulating Factor-1
  • IGF-I, fattore di crescita insulino-simile
  • EGF (Epidermal  Growth  Factor): è un fattore di crescita che svolge un ruolo importante nel regolare la  crescita, la proliferazione e la differenziazione cellulari, legandosi al suo recettore EGFR. Scoperta del premio Nobel Stanley Cohen nel 1986. Poiché l’iperespressione di EGF è un momento fondamentale per l’innesco e lo sviluppo di alcune neoplasie, la sua inibizione può in qualche modo interrompere la carcinogenesi (48). A questo scopo, sono state sviluppate alcune terapie basate su farmaci biotecnologici e anticorpi monoclonali; alcuni di questi ultimi sono diretti verso il recettore del fattore di crescita dell’epidermide, portando alla sua inattivazione e conseguente inibizione della proliferazione cellulare (49-52). La funzione dell’EGF nel processo di decidualizzazione sembra indirizzata all’epressione del fattore tissutale (TF) che rappresenta il fattore primario di emostasi per prevenire l’emorragia peri-impianto nella zona delle cellule stromali endometriali perivascolari (HESCs)  durante l’invasione trofoblastica endovascolare.  Per l’espressione dell’EGF contribuiscono sia l’azione del progesterone che dell’estradiolo, anche se quest’ultima non è indispensabile (52-55).
  • Estradiolo e progesterone: la maturazione endometriale è l’ultima tappa di un lungo processo che può essere riassunto in una fase di rigenerazione endometriale indotta dall’estradiolo e in unafase di maturazione endometriale o decidualizzazione indotta dal progesterone. Il progesterone viene fisologicamente prodotto prevalentemente  dal corpo luteo fino a circa  8 settimane di amenorrea gravidica quando la sua produzione è di fatto sostituita da quella del trofoblasto placentare.

Fecondazione e annidamento: Nel ciclo spontaneo, la fecondazione dell’ovocita avviene nel terzo distale tubarico. L’embrione e schematicamente può è trasportato dal movimento delle cilia epiteliali tubariche verso la cavità uterina. Durante la migrazione lo zigote moltiplica il numero dei suoi blastomeri e si trasforma in morula al 3° giorno circa. Al 7° giorno dopo la fecondazione, l’embrione giunge in cavità uterina allo stadio di blastocisti.  Se l’ovulo fecondato giungesse in utero prima della sua trasformazione in blastocisti avrebbe maggiori difficoltà ad impiantarsi anche perchè rischierebbe di trovare un endometrio non recettivo.

La blastocisti rimane sospesa nel liquido della cavità uterina per 2-3 giorni mentre  si libera della zona pellucida che avvolge l’embrione e ne impedisce l’annidamento tubarico (GEU). In questo periodo inoltre si sviluppa  la porzione del foglietto trofoblastico prossimo alla decidua che si duplica in uno strato esterno detto sinciziotrofoblasto e in uno strato interno denominato citotrofoblasto.  Questa è la fase in cui ha inizio l’annidamento vero e proprio.

L’annidamento endometriale dell’embrione è reso possibile dall’azione litica di enzimi, come la L-selectina, e la Matrix Metallo-proteinasi (MMP) detta anche matricina. Le principali classi di MMP sono le Collagenasi, le gelatinasi e le Stromelisine. Questi enzimi esercitano un’azione litica sulle cellule superficiali endometriali e, soprattutto,  su integrine e matrice extra-cellulare (ECM). Le integrine sono glicoproteine transmembrana che uniscono le che collegano le proteine della matrice extracellulare ai microfilamenti intracitoplasmatici costituendo un ponte che rende stabile il rapporto delle cellule con il tessuto extracellulare (ECM) e permette la trasmissione dei segnali intercellulari. Nell’endometrio sono presenti 22 tipi di integrine, mentre nell’embrione è presente l’integrina chiamata fibronectina.  Inoltre la porzione extra-cellulare delle integrine è provvista di 6 siti di legame (ligandi) che si agganciano ai ligandi embrionali in un’azione sinergica ed in tal modo le integrine sono in grado di mediare, “guidare” l’adesione della blastocisti all’endometrio.  Inoltre le MMP stimolano l’angiogenesi: favorendo la migrazione delle cellule endoteliali e la formazione della struttura dei capillari grazie al rilascio di fattori di crescita angiogenici dalla matrice extracellulare. Inoltre sono provviste di azione opposta inibente la neoangiogenesi mediante fattori inibitori in un complesso gioco di equilibrio fondamentale nello sviluppo placentare come nello sviluppo dei processi neoplastici che includono molteplici pathways (22-33).

Il sinciziotrofoblasto prolifera e penetra nella parete uterina (per circa 1/3 della parete uterina), abitualmente a livello del fondo dell’utero (zona in cui il miometrio è meno tonico), più raramente sulla parete posteriore o anteriore, Al 14º giorno dopo la fecondazione dell’ovocita, la blastocisti è totalmente incorporata nello stroma dell’endometrio. In questa fase l’endometrio, sotto lo stimolo del progesterone, è in trasformazione deciduale: diventa iperplastico e le ghiandole aumentano di numero e di volume e secernono un liquido ricco di glicogeno e lipidi che forniranno nutrimento all’eventuale impianto della blastocisti (34-39).

A processo compiuto (25° giorno del ciclo, poco dopo l’eventuale annidamento dell’embrione) l’endometrio si presenterà con uno strato superficiale (la decidua), situata immediatamente al di sotto dell’epitelio di rivestimento dell’endometrio, ed uno strato profondo (stroma) di consistenza spongiosa dovuta alle numerose ghiandole ripiene di liquido secretivo (40-42).

Endocrinologia della maturazione endometriale: la rigenerazione endometriale è indotta dall’estradiolo  secreto dalle cellule della granulosa su induzione del FSH mentre la maturazione endometriale, la trasformazione deciduale,  è governata dal progesterone secreto dal corpo luteo sotto stimolo dell’LH (43-44). 

A differenza di questa visione convenzionale, recenti studi hanno suggerito che, oltre ai suoi effetti indiretti mediati dalla secrezione steroidea ovarica, l’LH può agire anche  con azione diretta sull’endometrio sia nella fase follicolare che nella fase luteale (45-49).

 

 La risposta delle cellule-bersaglio alle gonadotropine é facilitata dalle prostaglandine intracellulari PGF2α, PGE2, PGI2 e PGD2, dal fattore insulino-simile IGF-I, EGF e dal calcio. La prolattina a basse concentrazioni risulta essere luteotrofica, mentre a dosi elevate  è luteolitica (50).

Azione dell’FSH: l’FSH agisce sui recettori specifici situati sulle cellule della granulosa inducendo fondamentalmente la proliferazione cellulare,  la moltiplicazione degli stessi recettori per FSH, la stimolazione dell’aromatasi che  trasforma il testosterone in estradiolo e l’espressione dei recettori per LH.
Azione dell’LH:  l’LH agisce sui recettori specifici posti sulla superficie delle cellule tecali interne favorendone la secrezione di testosterone e androstenedione. Inoltre l’LH controlla l’ovulazione di cui è “trigger”, permette la formazione del corpo luteo e la secrezione di progesterone ed estradiolo da parte delle cellule della granulosa luteinizzate. I recettori per l’LH sono presenti anche sulle cellule della granulosa in fase tarda follicolare; dal numero dei recettori per LH sulle cellule della granulosa dipende l’attività del corpo luteo.
Se l’LH, in fase follicolare precoce, raggiunge livelli sierici elevati, per somministrazione esogena o per surge endogeno, si producono danni sulla maturazione follicolare: “LH Ceiling“. Probabilmente ciò è dovuto ad un’iperproduzione androgenica e androgenizzazione ovarica conseguente agli aumentati livelli sierici di LH. E’ la stessa situazione che spesso si ritrova nelle pazienti PCOS. Si assiste a riduzione dell’attività dell’aromatasi, con ulteriore aumento di androgeni non più convertiti in estrogeni, deficit della biosintesi estrogenica, arresto della maturazione follicolare ed un’alterazione dei meccanismi di selezione del follicolo dominante.
L’LH endogeno è in grado, in presenza di FSH, di elicitare una biosintesi androgenica massimale, anche se legato soltanto ad una quantità inferiore all’ 1% dei propri recettori espressi dalle cellule della teca (spare receptor hypothesis). Le concentrazioni endogene di LH in corso di ciclo spontaneo e finanche i livelli circolanti di ormoni residui alla soppressione dell’asse ipotalamo-ipofisi-ovaio con analoghi del Gn-RH sembrerebbero essere sufficienti, nella maggior parte dei casi, ad occupare tale quota recettoriale e, quindi, a sostenere l’attività dell’FSH esogeno. Ciononostante, in una quota di pazienti oscillanti tra il 10 e il 30% , la COH (Iperstimolazione ovarica controllata) non esita in una risposta ovarica soddisfacente. È possibile ipotizzare che in queste pazienti  ci sia un grado eccessivo di soppressione dell’asse ipotalamo-ipofisario a causa dell’uso di analoghi o antagonisti del Gn-RH e, quindi, ad una insufficiente attività LH residua (2). Tali pazienti potrebbero beneficiare dell’uso di preparazioni farmacologiche (Luveris fl 75 UI) contenenti LH (51-53), la cui somministrazione, LH-added,  dovrebbe essere calibrata al fine di non produrre concentrazioni circolanti eccessivamente alte e potenzialmente dannose (5). E’ stato recentemente suggerito che la necessità di somministrare LH esogeno coincida con il riscontro di concentrazioni sieriche circolanti di  LH <1.2 UI/l. Ma anche questo dato è soggetto a numerose revisioni critiche sulla reale efficacia ed opportunità dell’LH-added anche nelle pazienti con bassi livelli di LH circolante (52-55).
INDAGINI STRUMENTALI DELLA RECETTIVITA’ ENDOMETRIA
  1. Valutazione ecografica thikness endometriale e IUS:  Uno spessore endometriale <5 mm si osserva di solito nella prima parte della fase follicolare fino a raggiungere i 10-14 mm circa a metà di questa per mantenersi su valori di 12-13 mm fino al 28° giorno di un ciclo spontaneo. La forma dello spessore endometriale (IUS, Intra Uterine Signal) varia anch’esso durante il ciclo variando da un’immagine lineare in fase follicolare precoce a una trilineare in epoca pre-ovulatoria a un’immagine ovoidale e compatta come un occhio di bue (eye’s bull) in fase luteale. Un thikness <6 mm non è compatibile con l’instaurarsi di una gravidanza.
  2. Profilo LH: si è ritrovato  che la presenza di numerosi  picchi di LH sono associati in modo statisticamente significativo con la presenza di piccoli follicoli in crescita e non aspirati. Tali picchi si presentano di ampiezza minore  rispetto al normale surge di LH dei cicli spontanei e sono associati a rialzi dell’estradiolo pre-ovulatorio anch’essi inferiori e corpi lutei di dimensioni ridotte. In questi casi l’esame istologico dell’endometrio rivela una netta asincronia di maturazione fra mucosa e stroma dell’endometrio con ridotto outcome gravidico. Quindi i protocolli di stimolazione ovarica nei cicli di fecondazione in vitro dovrebbero essere programmati in modo da ottenere un singolo, unico, elevato picco di LH  e l’eliminazione di ulteriori picchi di LH.
  3. Datazione istologica secondo i criteri di Noyes: risale a molti anni fa (1975) ed è ancora oggi la più utilizzata. Le mutazioni morfologiche presenti nella prima settimana dopo l’ovulazione si manifestano inizialmente nella componente ghiandolare (mitosi, vacuolizzazione basale e secrezione) successivamente nelle variazioni stromali (edema, reazione predeciduale e infiltrazione leucocitaria).  Si definisce “in fase” quando i dati istologici corrispondono alla fase del ciclo con una variazione non superiore a 2 giorni.
  4. ERA test: la valutazione di Noyes, sebbene utile per differenziare l’endometrio proliferativo da quello secretivo, non permette di individuare con certezza quei cambiamenti dell’endometrio che coincidono con l’acquisizione della recettività alla blastocisti. Con lo sviluppo della tecnologia “microarray” è stato possibile valutare l’espressione genica dell’endometrio umano nelle varie fasi, compresa quella di recettività. Il test di recettività endometriale, ERA Test, è un metodo sviluppato da IVIOMICS dopo decenni di ricerca e permette di trasferire gli embrioni nel periodo di massima recettività endometriale. Questa tecnica consente di valutare lo stato di recettività dell’endometrio mediante una biopsia endometriale effettuata dopo 7 giorni dal picco di LH in cicli precedenti all’embryo transfer  sia su ciclo spontaneo che dopo preparazione artificiale dell’endometrio con estrogeni e progestinici. La finestra d’impianto non cambia tra un ciclo e l’altro per un periodo relativamente lungo della vita riproduttiva.  Sul materiale prelevato si analizza l’espressione di 238 geni coinvolti nella recettività dell’endometrio. Se l’endometrio è recettivo significa che la finestra d’impianto corrisponde al periodo in cui è stata effettuata la biopsia. Se non è recettivo è possibile che la finestra d’impianto sia spostata in avanti, quindi il prelievo va ripetuto in un ciclo successivo circa due giorni più tardi rispetto alla precedente biopsia. Non è attendibile per la valutazione della finestra d’impianto in cicli stimolati, per l’interferenza dovuta all’assunzione di ormoni.

.

PRESIDI TERAPEUTICI: 

  • Blastocisti: permette di poter sincronizzare in modo ottimale la maturazione endometriale e lo sviluppo embrionale
  • Embryo-transfer ecoguidato
  • Assisted zona hatching
  • Biopsia pre-embrionale (Preimplantation Genetic Diagnosis, PGD): consente di utilizzare solo embrioni senza alterazioni genetiche e perciò dotati di maggiore vitalità.
  • Immunoglobuline aspecifiche endovena: per contrastare le infezioni endometriali sub-cliniche.
  • “Local injury: la revisione cavitaria strumentale e la biopsia endometriale effettuata nel ciclo precedente alla stimolazione ovarica per IVF sembra migliorare le percentuali di impianto nelle donne con fallimento  dell’impianto ripetuto ed inspiegato.

References:           

  1. Margalioth, E., Ben-Chetrit, A., Gal, M., Eldar-Geva, T. Investigation and treatment of repeated implantation failure following IVF-ET. Hum Reprod. 2006;21:3036–3043.
  2. Simon, A., Laufer, N. Repeated implantation failure: clinical approach. Fertil Steril. 2012;97:1039–1043.
  3. Boivin, J., Bunting, L., Collins, J.A., Nygren, K.G. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22:1506–1512.
  4. Moura-Ramos, M., Gameiro, S., Canavarro, M.C., Soares, I. Assessing infertility stress: re-examining the factor structure of the Fertility Problem Inventory. Hum Reprod. 2012;27:496–505.
  5. .Shapiro, B.S., Daneshmand, S.T., Garner, F.C., Aguirre, M., Ross, R. Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertil Steril. 2008;89:20–26.
  6. Franasiak, J., Forman, E., Hong, K., Werner, M., Upham, K., Scott, R. Investigating the impact of the timing of blastulation on implantation: active management of embryo-endometrial synchrony increases implantation rates. Fertil Steril. 2013;100:S97.
  7. Forman, E., Franasiak, J., Hong, K., Scott, R. Late expanding euploid embryos that are cryopreserved (CRYO) with subsequent synchronous transfer have high sustained implantation rates (SIR) similar to fresh normally blastulating euploid embryos. Fertil Steril. 2013;100:S99.
  8. Barrenetxea, G., de Larruzea, A.L., Ganzabal, T., Jiménez, R., Carbonero, K., Mandiola, M. Blastocyst culture after repeated failure of cleavage-stage embryo transfers: a comparison of day 5 and day 6 transfers. Fertil Steril. 2005;83:49–53.
  9. Ruiz-Alonso, M., Galindo, N., Pellicer, A., Simon, C. What a difference two days make: “personalized” embryo transfer (pET) paradigm: a case report and pilot study. Hum Reprod. 2014;29:1244–1247.
  10. T., Klentzeris, L., Barratt, C., Warren, M., Cooke, S., Cooke, I. A study of endometrial morphology in women who failed to conceive in a donor insemination programme. Br J Obstet Gynaecol.  1993;100:935–938.
  11. Navot, D., Scott, R.T., Droesch, K., Veeck, L.L., Liu, H.-C., Rosenwaks, Z. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril. 1991;55:114–118.
  12. Wilcox, A.J., Baird, D.D., Weinberg, C.R. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340:1796–1799.
  13. Tapia, A., Gangi, L.M., Zegers-Hochschild, F., Balmaceda, J., Pommer, R., Trejo, L. et al, Differences in  the endometrial transcript profile during the receptive period between women who were refractory to implantation and those who achieved pregnancy. Hum Reprod. 2008;23:340–351.
  14. Ruiz-Alonso, M., Blesa, D., Díaz-Gimeno, P., Gómez, E., Fernández-Sánchez, M., Carranza, F. et al, The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril. 2013;100:818–824.
  15. Klein J, Sauer MV 2002 Oocyte donation. Best Practice and Research in Clinical Obstetrics and Gynaecology 16, 277–291.
  16.  Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod. 1997;12:1545–9. doi: 10.1093/humrep/12.7.1545.
  17. Hourvitz A, Lerner-Geva L, Elizur SE, Baum M, Levron J, David B, Meirow D, Yaron R, Dor J. Role of embryo quality in predicting early pregnancy loss following assisted reproductive technology. Reprod Biomed Online. 2006;13:504–9. doi: 10.1016/S1472-6483(10)60637-2.
  18. Van Blerkom J, Davis P, Alexander S. A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos. Hum Reprod. 2001;16:719–29. doi: 10.1093/humrep/16.4.719.
  19. Hardarson T, Hanson C, Sjogren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod. 2001;16:313–8. doi: 10.1093/humrep/16.2.313
  20. Magli MC, Gianaroli L, Ferraretti AP. Chromosomal abnormalities in embryos. Mol Cell Endocrinol. 2001;22(183 Suppl 1):S29–34. doi: 10.1016/S0303-7207(01)00574-3.
  21. Plachot M, Junca AM, Mandelbaum J, de Grouchy J, Salat-Baroux J, Cohen J. Chromosome investigations in early life. II. Human preimplantation embryos. Hum Reprod. 1987;2:29–35.
  22. Wells D, Bermudez MG, Steuerwald N, Malter HE, Thornhill AR, Cohen J. Association of abnormal morphology and altered gene expression in human preimplantation embryos. Fertil Steril. 2005;84:343–55. doi: 10.1016/j.fertnstert.2005.01.143.
  23. Jurisicova A, Antenos M, Varmuza S, Tilly JL, Casper RF. Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol Hum Reprod. 2003;9:133–41. doi: 10.1093/molehr/gag016.
  24. Scott L, Alvero R, Leondires M, Miller B. The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod. 2000;15:2394–403. doi: 10.1093/humrep/15.11.2394.
  25. Tesarik J, Junca AM, Hazout A, Aubriot FX, Nathan C, Cohen-Bacrie P, Dumont-Hassan M. Embryos with high implantation potential after intracytoplasmic sperm injection can be recognized by a simple, non-invasive examination of pronuclear morphology. Hum Reprod. 2000;15:1396–9. doi: 10.1093/humrep/15.6.1396.
  26. Hnida C, Engenheiro E, Ziebe S. Computer-controlled, multilevel, morphometric analysis of blastomere size as biomarker of fragmentation and multinuclearity in human embryos. Hum Reprod. 2004;19:288–93. doi: 10.1093/humrep/deh070.
  27. Moriwaki T, Suganuma N, Hayakawa M, Hibi H, Katsumata Y, Oguchi H, Furuhashi M. Embryo evaluation by analysing blastomere nuclei. Hum Reprod. 2004;19:152–6.
  28. Lundin K, Bergh C, Hardarson T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod. 2001;16:2652–7. doi: 10.1093/humrep/16.12.2652.
  29. Munne S, Alikani M, Tomkin G, Grifo J, Cohen J. Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertil Steril. 1995;64:382–91.
  30. erriou P, Sapin C, Giorgetti C, Hans E, Spach JL, Roulier R. Embryo score is a better predictor of pregnancy than the number of transferred embryos or female age. Fertil Steril. 2001;75:525–31.
  1. Devroey P, Pados G 1998 Preparation of endometrium for egg donation. Human Reproduction Update 4, 856–861.
  2. Cecilia T. ValdesCarlos SimonCarlos SimonAmy Schutt: Implantation failure of endometrial origin: it is not pathology, but our failure to synchronize the developing embryo with a receptive endometrium. Fertil Steril 2017;108, 1:1518
  3. Diaz-Gimeno P, Ruiz-Alonso M, Blesa D, Bosch N, Martinez-Conejero JA, Alama P, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99:508–517.
  4. Dunn CL, Kelly RW, Critchley HO. Deciduali-zation of the human endometrial stromal cell: an enigmatic transformation. Reprod Biomed Online. 2003;7(2):151–61.
  5. Critchley HO, Jones RL, Lea RG, Drudy TA, Kelly RW, Williams AR, Baird DT. Role of inflammatory mediators in human endometrium during progesterone withdrawal and early pregnancy. J Clin Endocrinol Metab 1999a;84:240–248.
  6. Antinidatory effect of luteal phase administration of mifepristone (RU486) is associated with changes in endometrial prostaglandins during the implantation window. Nayak NR, Sengupta J, Ghosh D.Contraception. 1998 Aug; 58(2):111-7.
  7. Achache H, Tsafrir A, Prus D, Reich R, Revel A. Defective endometrial prostaglandin synthesis identified in patients with repeated implantation failure undergoing in vitro fertilization. Fertil Steril. 2010;94(4):1271–8.
  8. Kennedy TG, Gillio-Meina C, Phang SH. Prostaglandins and the initiation of blastocyst implantation and decidualization. Reproduction. 2007;134(5):635–43.  
  9. Richards RG, Brar AK, Frank GR, Hartman SM, Jikihara H. Fibroblast cells from term human decidua closely resemble endometrial stromal cells: induction of prolactin and insulin-like growth factor binding protein-1 expression. Biol Reprod. 1995;52(3):609–15. 
  10. Sugino N, Kashida S, Karube-Harada A, Takiguchi S, Kato H. Expression of vascular endothelial growth factor (VEGF) and its receptors in human endometrium throughout the menstrual cycle and in early pregnancy. Reproduction. 2002;123(3):379–87.
  11. Simón, C., Martın, J.C., Pellicer, A. Paracrine regulators of implantation. Best Pract Res Clin Obstet Gynaecol. 2000;14:815–826.
  12. Tuckerman E, Mariee N, Prakash A, Li TC, Laird S. Uterine natural killer cells in peri-implantation endometrium from women with repeated implant-ation failure after IVF. J Reprod Immunol. 2010;87(1-2):60–66.
  13. Sugino N, Kashida S, Karube-Harada A, Takiguchi S, Kato H. Expression of vascular endothelial growth factor (VEGF) and its receptors in human endometrium throughout the menstrual cycle and in early pregnancy. Reproduction. 2002;123(3):379–87. 
  14. Abberton KM, Taylor NH, Healy DL, Rogers PA. Vascular smooth muscle cell proliferation in arterioles of the human endometrium. Hum Reprod 1999b;14:1072–1079. [PubMed]
  15. Telgmann RGellersen B.  Marker genes of decidualization: activation of the decidual prolactin gene.Hum Reprod Update. 1998 Sep-Oct;4(5):472-9.
  16. Analysis on the promoter region of human decidual prolactin gene in the progesterone-induced decidualization and cAMP-induced decidualization of human endometrial stromal cells. Wang DF, Minoura H, Sugiyama T, Tanaka K, Kawato H, Toyoda N, Sagawa N.Mol Cell Biochem. 2007 Jun; 300(1-2):239-47. Epub 2006 Dec 23.
  17. Marker genes of decidualization: activation of the decidual prolactin gene. Telgmann R, Gellersen B.Hum Reprod Update. 1998 Sep-Oct; 4(5):472-9.
  18. Brosens JJ, Hayashi N, White JO. Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cells. Endocrinology 1999;140:4809–4820. 
  19. Fan X, Krieg S, Kuo CJ, Wiegand SJ, Rabinovitch M, Druzin ML, Brenner RM, Giudice LC, Nayak NR. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. FASEB J2008;22:3571–3580.
  20. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and funcGuo Y, He B, Xu X, Wang J. Comprehensive analysis of leukocytes, vascularization and matrix metalloproteinases in human menstrual xenograft model. PLoS One 2011;6:e16840. tions. Immunity 2010;32:593–604.
  21. Hannan NJ, Salamonsen LA. Role of chemokines in the endometrium and in embryo implantation. Curr Opin Obstet Gynecol 2007;19:266–272.
  22. Henderson TA, Saunders PT, Moffett-King A, Groome NP, Critchley HO. Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab 2003;88:440–449. 
  23. Kelly RW, King AE, Critchley HO. Cytokine control in human endometrium. Reproduction2001;121:3–19.
  24. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, Masch R, Lockwood CJ, Schachter AD, Park PJ et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003;198:1201–1212. 
  25. Malik S, Day K, Perrault I, Charnock-Jones DS, Smith SK. Reduced levels of VEGF-A and MMP-2 and MMP-9 activity and increased TNF-alpha in menstrual endometrium and effluent in women with menorrhagia. Hum Reprod 2006;21:2158–2166. 
  26. Maybin JA, Hirani N, Brown P, Jabbour HN, Critchley HO. The regulation of vascular endothelial growth factor by hypoxia and prostaglandin F2{alpha} during human endometrial repair. J Clin Endocrinol Metab 2011b;96:2475–2483.
  27. Mints M, Hultenby K, Zetterberg E, Blomgren B, Falconer C, Rogers R, Palmblad J. Wall discontinuities and increased expression of vascular endothelial growth factor-A and vascular endothelial growth factor receptors 1 and 2 in endometrial blood vessels of women with menorrhagia. Fertil Steril 2007;88:691–697. 
  28. Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol 2002;2:656–663. 
  29. Sharkey AM, Day K, McPherson A, Malik S, Licence D, Smith SK, Charnock-Jones DS. Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. J Clin Endocrinol Metab 2000;85:402–409.
  30. Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update. 2005;11:613–630. 
  31. Cytokines in implantation. Salamonsen LA, Dimitriadis E, Robb L.Semin Reprod Med. 2000; 18(3):299-310.
  32. Review: LIF and IL11 in trophoblast-endometrial interactions during the establishment of pregnancy.
    Dimitriadis E, Menkhorst E, Salamonsen LA, Paiva P.Placenta. 2010 Mar; 31 Suppl:S99-104. Epub 2010 Feb 2.
  33. Herbst RS, Review of epidermal growth factor receptor biology, in International Journal of Radiation Oncology, Biology, Physics, vol. 59, 2 Suppl, 2004, pp. 21–6
  34. AM Petit, J Rak, MC Hung, P Rockwell, N Goldstein, B Fendly and RS Kerbel, Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors, in American Journal of Pathology, vol. 151, nº 6, dicembre 1997, pp. 1523-30, PMID 9403702.
  35. V Lindner, M A Reidy, Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor (PDF), in Proc Natl Acad Sci U S A., vol. 88, nº 9, 1º maggio 1991, pp. 3739-43, PMID 2023924.
  36. Marie C. Prewett, Andrea T. Hooper, Rajiv Bassi, Lee M. Ellis, Harlan W. Waksal and Daniel J. Hicklin, Enhanced Antitumor Activity of Anti-epidermal Growth Factor Receptor Monoclonal Antibody IMC-C225 in Combination with Irinotecan (CPT-11) against Human Colorectal Tumor Xenografts (PDF), in American Association for Cancer Research, vol. 8, nº 5, maggio 2002, pp. 994-1003,
  37. J. Baselga, D. Pfister, M. R. Cooper, R. Cohen, B. Burtness, M. Bos, G. D’Andrea, A. Seidman, L. Norton, K. Gunnett, J. Falcey, V. Anderson, H. Waksal, J. Mendelsohn, Phase I Studies of Anti–Epidermal Growth Factor Receptor Chimeric Antibody C225 Alone and in Combination With Cisplatin, in Journal of Clinical Oncology, vol. 18, nº 4, febbraio 2000, pp. 904-14
  38. Lockwood CJKrikun GRunic RSchwartz LBMesia AFSchatz F.   Progestin-epidermal growth factor regulation of tissue factor expression during decidualization of human endometrial stromal cells. J Clin Endocrinol Metab. 2000 Jan;85(1):297-301.
  39. Lockwood CJKrikun GSchatz F.    Decidual cell-expressed tissue factor maintains hemostasis in human endometrium. nn N Y Acad Sci. 2001 Sep;943:77-88.
  40. Progestin-epidermal growth factor regulation of tissue factor expression during decidualization of human endometrial stromal cells.

    Lockwood CJ, Krikun G, Runic R, Schwartz LB, Mesia AF, Schatz F.J Clin Endocrinol Metab. 2000 Jan; 85(1):297-301.
  41. Hu W, Feng Z, Teresky AK, Levine AJ (November 2007). ”p53 regulates maternal reproduction through LIF”. Nature450 (7170): 721–724
  42. Aghajanova L (December 2004). “Leukemia inhibitory factor and human embryo implantation”. Annals of the New York Academy of Sciences1034: 176–83.
  43. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Köntgen F, Abbondanzo SJ (September 1992). “Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor”.  Nature.  359 (6390): 76–9.
  44. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, Abbondanzo SJ. Blastocyst implantation depends on maternal expression of leukemia inhibitory factor. Nature. 1992;359:76–79. doi: 10.1038/359076a0
  45. Robb L, Li R, Hartley L, Nandurkar HH, Koentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nature Medicine. 1998;4:303–308.
  46. Du XX, Williams DA. Interleukin-11: Review of molecular, cell biology and clinical use. Blood  1997;89:3897–3908.
  47. Cork BA, Li TC, Warren MA, Laird SM. Interleukin-11 (IL-11) in human endometrium: expression throughout the menstrual cycle and the effects of cytokines on endometrial IL-11 production in vitro. J Reprod Immunol. 2001;50:3–17. doi: 10.1016/S0165-0378(00)00089-9.
  48. Chen HF, Lin CY, Chao KH, Wu MY, Yang YS, Ho HN. Defective production of interleukin-11 by decidua and chorionic villi in human anembryonic pregnancy. J Clin Endocrinol Metab. 2002;87:2320–2328.
  49. Cork BA, Tuckerman EM, Li TC, Laird SM. Expression of interleukin (IL)-11 receptor by the human endometrium in vivo and effects of IL-11, IL-6 and LIF on the production of MMP and cytokines by human endometrial cells in vitro. Mol Hum Reprod. 2002;8:841–848. doi: 10.1093/molehr/8.9.841.
  50. Dimitriadis E, Robb L, Salamonsen LA. Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol Hum Reprod. 2002;8:636–643. doi: 10.1093/molehr/8.7.636.
  51. Dimitriadis E, Robb L, Salamonsen LA. Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol Hum Reprod. 2002;8:636–643.
  52. Tanaka T, Sakamoto T, Miyama M, Ogita S, Umesaki N. Interleukin-11 enhances cell survival of decidualized normal human endometrial stromal cells. Gynecol Endocrinol. 2001;15:272–278.
  53. Karpovich N, Chobotova K, Carver J, Heath JK, Barlow DH, Mardon HJ. Expression and function of interleukin-11 and its receptor alpha in the human endometrium. Mol Hum Reprod. 2003;9:75–80. doi: 10.1093/molehr/gag012.
  54. Bilinski P, Roopenian D, Gossler A. Maternal IL-11Rα function is required for normal decidua and fetoplacental development in mice. Genes Dev. 1998;12:2234–2243.
  55. Chen HF, Lin CY, Chao KH, Wu MY, Yang YS, Ho HN. Defective production of interleukin-11 by decidua and chorionic villi in human anembryonic pregnancy. J Clin Endocrinol Metab. 2002;87:2320–2328.
  56. Cork BA, Li TC, Warren MA, Laird SM. Interleukin-11 (IL-11) in human endometrium: expression throughout the menstrual cycle and the effects of cytokines on endometrial IL-11 production in vitro. J Reprod Immunol. 2001;50:3–17.
  57. Dimitriadis E, Salamonsen LA, Robb L. Expression of interleukin-11 during the human menstrual cycle: coincidence with stromal cell decidualization and relationship to leukaemia inhibitory factor and prolactin. Mol Hum Reprod. 2000;6:907–914.
  58. Salamonsen LA, Dimitriadis E, Robb L. Cytokines in implanatation. Semin Reprod Med. 2000;18:299–310.
  59. Tanaka T, Sakamoto T, Miyama M, Ogita S, Umesaki N. Interleukin-11 enhances cell survival of decidualized normal human endometrial stromal cells. Gynaecol Endocrinol. 2001;15:272–278.


*********************************** PROGESTERONE AZIONE

  1. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev1997;18:502–519
  2. Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS Jr. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab 1988;67:334–340
  3. Mote PA, Johnston JF, Manninen T, Tuohimaa P, Clarke CL. Detection of progesterone receptor forms A and B by immunohistochemical analysis. J Clin Pathol 2001;54:624–630.

*************************+++++++ IDROSALPINGITI, ENDOMETRITI, ANNESSITI

  1. Zeyneloglu, H.B., Arici, A., Olive, D.L. Adverse effects of hydrosalpinx on pregnancy rates after in vitro fertilization–embryo transfer. Fertil Steril. 1998;70:492–499.
  2. Meyer, W., Castelbaum, A., Somkuti, S., Sagoskin, A., Doyle, M., Harris, J. et al, Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod. 1997;12:1393–1398.
  3. Penzias, A.S. Recurrent IVF failure: other factors. Fertil Steril. 2012;97:1033–1038.
  4.  Johnston-MacAnanny EB, Hartnett J, Engmann LL, Nulsen JC, Sanders MM, Benadiva CA. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil Steril. 2010;93(2):437–41
  5. Inmaculada Moreno, Francisco M. Codoñer, Felipe Vilella, Diana Valbuena, Juan F. Martinez-Blanch, Jorge Jimenez-Almazán, Roberto Alonso, Pilar Alamá, Jose Remohí, Antonio Pellicer, Daniel Ramon, Carlos Simon. Evidence that the endometrial microbiota has an effect on implantation success or failureAmerican Journal of Obstetrics and Gynecology, 2016; 215 (6): 684
***************+EMOTIONAL DISTRESS, OBESITA’, ETA’
  1. Boivin, J., Griffiths, E., Venetis, C.A. Emotional distress in infertile women and failure of assisted reproductive technologies: meta-analysis of prospective psychosocial studies. Br Med J. 2011;342:d223.
  2. Broughton, D.E., Moley, K.H. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107:840–847.
  3. Shapiro, B., Daneshmand, S., Garner, F., Aguirre, M., Hudson, C. Factors related to embryo-endometrium asynchrony in fresh IVF cycles increase in prevalence with maternal age. Fertil Steril. 2013;100:S287
********************************************RECEPTIVITY ARRAY
  1. Díaz-Gimeno, P., Ruiz-Alonso, M., Blesa, D., Bosch, N., Martínez-Conejero, J.A., Alamá, P. et al, The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99:508–517.
  2. Garrido-Gomez T, Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Vilella F, Simon C. Profiling the gene signature of endometrial receptivity: clinical results. Fertil Steril. 2013;99:1078–85.

 

*********************************** INTEGRINE, MMP

  1. Giancotti FG, et al. (1999) Integrin signaling. Science. 285(5430): 1028-32.
  2. Schlaepfer DD, et al. (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 372(6508): 786-91.
  3. Schlaepfer DD, et al. (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 372(6508): 786-91.
  4. Schlaepfer DD, et al. (1998) Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8(4): 151-7.
  5. Di Carlo A. The role of matrix-metalloproteinase-2 (MMP-2) and matrix-metalloproteinase-9 (MMP-9) in angiogenesis. The inducer and inhibitor role of gelatinase A (MMP-2) and gelatinase B (MMP-9) in the formation of new blood vessels. Prevent Res, published on line 18. Oct. 2012, P&R Public. 34.
  6. Nagase H., Woessner J.F.Jr. “Matrix metalloproteinases”. The Journal of biological chemistry, 274 (31), 21491-21494, 1999.
  7. Schlaepfer DD, et al. (1998) Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8(4): 151-7.
  8. Schlaepfer DD, et al. (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 372(6508): 786-91.
  9. Schlaepfer DD, et al. (1998) Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8(4): 151-7.
  10. Nagase H., Woessner J.F.Jr. “Matrix metalloproteinases”. The Journal of biological chemistry, 274 (31), 21491-21494, 1999.
  11. Sternlicht M.D., Werb Z. “How matrix metalloproteinases regulate cell behavior”. Annual Review of Cell and Developmental Biology, 17, 463-516, 2001.
  12. Gellersen B1, Brosens IABrosens JJ.:  Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med. 2007 Nov;25(6):445-53.
  13. Dunn CL1, Kelly RWCritchley HO.Decidualization of the human endometrial stromal cell: an enigmatic transformation. Reprod Biomed Online. 2003 Sep;7(2):151-61.
  14. Tang B, Guller S, Gurpide EEndocrine. 1997 Jun; 6(3):301-7.Mechanisms involved in the decidualization of human endometrial stromal cells. .Acta Eur Fertil. 1993 Sep-Oct; 24(5):221-3.
  15. Baniţă IM1, Bogdan F.: “Study of chorial villi formation and evolution”.  Rom J Morphol Embryol. 1998 Jan-Dec;44(1-4):11-6.
  16. Castellucci M, Kosanke G, Verdenelli F, Huppertz B, Kaufmann P.: “Villous sprouting: fundamental mechanisms of human placental development”. Hum Reprod Update. 2000 Sep-Oct; 6(5):485-94.
  17. Castellucci M, Scheper M, Scheffen I, Celona A, Kaufmann P.: The development of the human placental villous tree. Anat Embryol (Berl). 1990; 181(2):117-28.
  18. Frank H. Netter, Atlante di anatomia umana, terza edizione, Elsevier Masson, 2007. ISBN 978-88-214-2976-7
  19. Anastasi G. e altri, “Trattato di anatomia umana” Edi Ermes 2006
  20. Testut L. et Latarjet A.: “Traitè d’anatomie humaine”. G. Doin & CIE Editeurs;1949.

*****************************************  LH, LH ADDED,  LH SUPPLEMENTATION

  1. Rao CV 2001 Multiple novel roles of luteinizing hormone. Fertility and Sterility 76, 1097–1100.
  2. Shemesh M 2001 Actions of gonadotrophins on the uterus. Reproduction 121, 835–842.
  3. Srisuparp S, Strakova Z, Fazleabas AT 2001 The role of chorionic gonadotropin (CG) in blastocyst implantation. Archives of Medical Research 32, 627–634
  4. Stepien A, Shemesh M, Ziecik AJ 1999 Luteinizing hormone receptor kinetic and LH-induced prostaglandin production throughout the oestrous cycle in porcine endometrium. Reproduction Nutrition et Développement 39, 663–674.
  5. Bourgain C, Smitz J, Camus M et al. 1994 Human endometrial maturation is markedly improved after luteal supplementation of gonadotrophin-releasing hormone analogue/human menopausal gonadotrophin stimulated cycles. Human Reproduction 9, 32–40
  6. Richard A. Jungmann and John S. Schweppe: “Mechanism of Action of Gonadotropin”. J. Biol. Chem. 1972, 247:5535-5542.
  7. Levy DP, Navarro JM, Schattman GL, Davis OK, Rosenwaks Z (2000) The role of LH in ovarian stimulation: exogenous LH, let’s design the future. Hum Reprod; 15:2258-2265.
  8. De Placido G, Alviggi C, Mollo A, Strina I, Ranieri A, Alviggi E, Wilding M, Varricchio MT, Borrelli AL and Conforti S (2004) Effects of recombinant LH (rLH) supplementation during controlled ovarian hyperstimulation (COH) in normogonadotrophic women with an initial inadequate response to recombinant FSH (rFSH) after pituitary downregulation. Clin Endocrinol; 60:637-643.
  9. De Placido G, Alviggi C, Perino A, Strina I, Lisi F, Fasolino A, De Palo R, Ranieri A, Colacurci N and Mollo A on behalf of the Italian Collaborative Group on Recombinant Human Luteinizing Hormon. (2005) Recombinant human LH supplementation versus recombinant human FSH (rFSH) step-up protocol during controlled ovarian stimulation in normogonadotrophic women with initial inadequate ovarian response to rFSH. A multicentre, prospective, randomized controlled trial. Human Reproduction; 20(2):390-396.
  10. Chappel SC and Howles C (1991) Revaluation of the roles of luteinizing hormone and follicle stimulating hormone in the ovulatory process. Hum Reprod; 6:1206-12.
  11. Direito A., Bailly, S., Mariani, A., Ecochard, R. Relationships between the luteinizing hormone surge and other characteristics of the menstrual cycle in normally ovulating women. Fertil Steril. 2013;99:279–285.e3.AbstractFull TextFull Text PDF
  12. Juan-Enrique Schwarze, et al: Addition of neither recombinant nor urinary luteinizing hormone was associated with an improvement in the outcome of autologous in vitro fertilization/intracytoplasmatic sperm injection cycles under regular clinical settings: a multicenter observational analysis. Fertil Steril 2016;106,7:1714-1717e1
  13. Irani M, Robles A, Gunnala V, Reichman DE, Rosenwarks: Optimal parameters for determining the LH surge in natural cycle frozen-thawed embryo transfers. Fertil Steril 2016;106,3S:e143
  14. Bourgain C, Ubaldi F, Tavaniotou A et al. 2002 Endometrial hormone receptors and proliferation index in the periovulatory phase of stimulated embryo transfer cycles in comparison with natural cycles and relation to clinical pregnancy outcome. Fertility and Sterility 78, 237–244
  15. Devroey P, Pados G 1998 Preparation of endometrium for egg donation. Human Reproduction Update 4, 856–861.
.

*************************** RECETTIVITA’ ENDOMETRIALE DIAGNOSTICA GENETICA

  1. Domínguez F, Remohí J, Pellicer A, Simón C 2003 Human endometrial receptivity: a genomic approach. Reproductive BioMedicine Online 6, 332–338.
  2. Bhagwat SR, Chandrashekar DS, Kakar R, Davuluri S, Bajpai AK, Nayak S, et al. Endometrial receptivity: a revisit to functional genomics studies on human endometrium and creation of HGEx-Erdb. PLoS One. 2013;8(3):e58419. [PMC free article] [PubMed]
  3. Diaz-Gimeno P, Ruiz-Alonso M, Blesa D, Bosch N, Martinez-Conejero JA, Alama P, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diag-nostic method for endometrial receptivity. Fertil Steril. 2013;99(2):508–17. [PubMed]
  4. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.
    1. Koler, M., Achache, H., Tsafrir, A., Smith, Y., Revel, A., Reich, R. Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum Reprod. 2009;24:2541–2548.
    2. Koot, Y.E., Van Hooff, S.R., Boomsma, C.M., Van Leenen, D., Koerkamp, M.J.G., Goddijn, M. et al, An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF.Sci Rep. 2016;6:19411.
    3. Bersinger, N.A., Wunder, D.M., Birkhäuser, M.H., Mueller, M.D. Gene expression in cultured endometrium from women with different outcomes following IVF. Mol Hum Reprod. 2008;14:475–484.
    4. Simon, C., Vladimirov, I.K., Castillon Cortes, G., Ortega, I., Cabanillas, S., Vidal, C. et al, Prospective, randomized study of the endometrial receptivity analysis (ERA) test in the infertility work-up to guide personalized embryo transfer versus fresh transfer or deferred embryo transfer. Fertil Steril. 2016;106:e46–e47.Abstract | Full Text | Full Text PDF
    5. Díaz-Gimeno, P., Horcajadas, J.A., Martínez-Conejero, J.A., Esteban, F.J., Alamá, P., Pellicer, A. et al, A gomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95:50–60.ene15.AbstractFull TextFull Text PDF

******************** DIAGNOSTICA  RECETTORIALE  MOLECOLARE ENDOMETRIALE

  1. Ponnampalam, A.P., Weston, G.C., Trajstman, A.C., Susil, B., Rogers, P.A. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10:879–893.
  2. Talbi, S., Hamilton, A., Vo, K., Tulac, S., Overgaard, M.T., Dosiou, C. et al, Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147:1097–1121.
  3. Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60. [PubMed]
  4. Riesewijk, A., Martín, J., van Os, R., Horcajadas, J.A., Polman, J., Pellicer, A. et al, Gene expression profiling of human endometrial receptivity on days LH+ 2 versus LH+ 7 by microarray technology.Mol Hum Reprod. 2003;9:253–264.
  5. Ruiz-Alonso, M., Blesa, D., Simón, C. The genomics of the human endometrium. Biochim Biophys Acta. 2012;1822:1931–1942.

********************************************************************  HATCHING

 

  1. Magli, M., Gianaroli, L., Ferraretti, A., Fortini, D., Aicardi, G., Montanaro, N. Rescue of implantation potential in embryos with poor prognosis by assisted zona hatching. Hum Reprod. 1998;13:1331–1335.
  2. Pehlivan, T., Rubio, C., Rodrigo, L., Romero, J., Remohi, J., Simon, C. et al, Impact of preimplantation genetic diagnosis on IVF outcome in implantation failure patients. Reprod Biomed Online. 2003;6:232–237.
  3. Blockeel, C., Schutyser, V., De Vos, A., Verpoest, W., De Vos, M., Staessen, C. et al, Prospectively randomized controlled trial of PGS in IVF/ICSI patients with poor implantation. Reprod Biomed Online. 2008;17:848–854. Abstract | Full Text PDF

************************************+++ CELLULE STAMINALI

  1. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 2009;80:1136–1145.
  2. Cervello I, Mas A, Gil-Sanchis C, Simon C. Somatic stem cells in the human endometrium. Semin Reprod Med 2013;31:69–76.
  3. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Schwab KE, Gargett CE um Reprod. 2007 Nov; 22(11):2903-11.
  4. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13(1):87–101.
  5. Cervello I, Simon C. Somatic stem cells in the endo-metrium. Reprod Sci. 2009;16(2):200–5.
  6. Dimitrov R, Kyurkchiev D, Timeva T, Yunakova M, Stamenova M, Shterev A, et al. First-trimester human decidua contains a population of mesenchymal stem cells. Fertil Steril. 2010;93(1):210–9.
  7. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80(6):1136–45.[PMC free article] [PubMed
  8. Mints M, Jansson M, Sadeghi B, Westgren M, Uzunel M, Hassan M, et al. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod. 2008;23(1):139–43.
  9. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70(6):1738–50.
  10. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;15(5):57.
  11. Chan RW, Kaitu'u-Lino T, Gargett CE. Role of label-retaining cells in estrogen-induced endometrial regeneration. Reprod Sci. 2012;19(1):102–14.
  12. Gargett CE, Schwab KE, Brosens JJ, Puttemans P, Benagiano G, Brosens I. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis. Mol Hum Reprod 2014;20:591–598.
******************************* IMMUNOLOGIA
  1. Makrigiannakis A. Repeated implantation failure: Immunological aspects and evidence based treatment modalities. In: Makrigiannakis A, editor. Proceeding of MSRM International Meeting “Implantation-recurrent miscarriages science and clinical aspects”; 2010 Sept 24-26; Chania, Crete, Greece: Mediterranean Society for Reproductive Medicine; 2010. pp. 21–2.
  2.  Tuckerman E, Mariee N, Prakash A, Li TC, Laird S. Uterine natural killer cells in peri-implantation endometrium from women with repeated implant-ation failure after IVF. J Reprod Immunol. 2010;87(1-2):60–6.
  3.  Flynn L, Byrne B, Carton J, Kelehan P, O'Herlihy C, O'Farrelly C. Menstrual cycle dependent fluctuations in NK and T-lymphocyte subsets from non-pregnant human endometrium. Am J Reprod Immunol. 2000;43(4):209–17.

****************************** DATAZIONE ENDOMETRIO ENDOMETRIO IN FASE/IMPAIRED

  • Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25.

Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS ONE. 2010;5(4):10287

*********************************** PGD

Thornhill AR, deDie-Smulders CE, Geraedts JP, Harper JC, Harton GL, Lavery SA, et al. ESHRE PGD Consortium ‘Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)’ Hum Reprod. 2005;20(1):35–48.

**********************************************************************************  TERAPIA  IMMUNOLOGICA

  1. Stephenson MD, Fluker MR. Treatment of repeated unexplained in vitro fertilization failure with intravenous immunoglobulin: a randomized, placebo controlled Canadian trial. Fertil Steril. 2000;74(6):1108–13. [PubMed
  2. Tan BK, Vandekerckhove P, Kennedy R, Keay SD. Investigation and current management of recurrent IVF treatment failure in the UK. BJOG. 2005;112(6):773–80.
  3. Toth B, Wurfel W, Germeyer A, Hirv K, Makrigiannakis A, Strowitzki T. Disorders of implantation--are there diagnostic and therapeutic options? J Reprod Immunol. 2011;90(1):117–23.
  4. Coulam CB. Implantation failure and immunotherapy. Hum Reprod. 1995;10(6):1338–40.
  5. Balasch J, Creus M, Fabregues F, Font J, Martorell J, Vanrell JA. Intravenous immunoglobulin preceding in vitro fertilization-embryo transfer for patients with repeated failure of embryo transfer. Fertil Steril. 1996;65(3):655–8. [PubMed]
  6. Sher G, Zouves C, Feinman M, Maassarani G, Matzner W, Chong P, et al. A rational basis for the use of combined heparin/aspirin and IVIG immunotherapy in the treatment of recurrent IVF failure associated with antiphospholipid antibodies. Am J Reprod Immunol. 1998;39(6):391–4. [PubMed]
  7. Christiansen OB, Pedersen B, Rosgaard A, Husth M. A randomized, double-blind, placebo controlled trial of intravenous immunoglobulin in the preven-tion of recurrent miscarriage: evidence for a thera-peutic effect in women with secondary recurrent miscarriage. Hum Reprod. 2002;17(3):809–16.
  8. Coulam CB, Acacio B. Does immunotherapy for treatment of reproductive failure enhance live births? Am J Reprod Immunol. 2012;67(4):296–304.
  9. Stephenson MD, Kutteh WH, Purkiss S, Librach C, Schultz P, Houlihan E, et al. Intravenous immunoglobulin and idiopathic secondary recurrent miscarriage: a multicentered randomized placebo-controlled trial. Hum Reprod. 2010;25(9):2203–9.
  10. Stephenson MD, Fluker MR. Treatment of repeated unexplained in vitro fertilization failure with intravenous immunoglobulin: a randomized, placebo controlled Canadian trial. Fertil Steril. 2000;74(6):1108–13.
******************************************+TERAPIA CON REVISIONE CAVIT, BIOPSIA
  1. Barash A, Dekel N, Fieldust S, Segal I, Schechtman E, Granot I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril. 2003;79(6):1317–22.
  2. Narvekar SA, Gupta N, Shetty N, Kottur A, Srinivas M, Rao KA. Does local endometrial injury in the nontransfer cycle improve the IVF-ET outcome in the subsequent cycle in patients with previous unsuccessful IVF? A randomized con-trolled pilot study. J Hum Reprod Sci. 2010;3(1):15–9.[
  3. Karimzadeh MA, Ayazi Rozbahani M, Tabibnejad N. Endometrial local injury improves the pregnancy rate among reccurent implantation failure patients undergoing in vitro fertilization/intra-cytoplasmic sperm injection: a randomised clinical trial. Aust N Z J Obstet Gynecol. 2009;49(6):677–80.
  4. Gnainsky Y, Granot I, Aldo PB, Barash A, Or Y, Schechtman E, et al. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil Steril. 2010;94(6):2030–6. [PMC free article] [PubMed]
  5. Narvekar SA, Gupta N, Shetty N, Kottur A, Srinivas M, Rao KA. Does local endometrial injury in the nontransfer cycle improve the IVF-ET outcome in the subsequent cycle in patients with previous unsuccessful IVF? A randomized con-trolled pilot study. J Hum Reprod Sci. 2010;3(1):15–9
  6. Zhou L, Li R, Wang R, Huang HX, Zhong K. Local injury to the endometrium in controlled ovarian hyperstimulation cycles improves implant-ation rates. Fertil Steril. 2008;89(5):1166–76. [PubMed]
  7. Potdar N, Gelbaya T, Nardo LG. Endometrial in-jury to overcome recurrent embryo implantation failure: a systematic review and meta-analysis. Reprod Biomed Online. 2012;25(6):561–71. [PubMed]
  8. Shohayeb A, El-Khayat W. Does a single endometrial biopsy regimen (SEBR) improve ICSI outcome in patients with repeated implantation failure? A randomised controlled trial. Eur J Obstet Gynecol Reprod Biol. 2012;164(2):176–9. [PubMed]
  9.  Rubio C, Simon C, Mercader A, Garcia-Velasco J, Remohi J, Pellicer A. Clinical experience employing co-culture of human embryos with autologous human endometrial epithelial cells. Hum Reprod. 2000;15(Suppl 6):31–8. [PubMed]
  10.  Puissant F, Van Rysselberge M, Barlow P, Deweze J, Leroy F. Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod. 1987;2:705–8.
  11. Zhu J, Meniru GI, Craft IL. Embryo developmental stage at transfer influences outcome of treatment with intracytoplasmic sperm injection. J Assisted Reproduction Genetics. 1997;14:245–9.
  12. Hu Y, Maxson WS, Hoffman DI, Ory SJ, Eager S, Dupre J, Lu C. Maximizing pregnancy rates and limiting higher-order multiple conceptions by determining the optimal number of embryos to transfer based on quality. Fertil Steril. 1998;69:650–7. doi: 10.1016/S0015-0282(98)00024-7. [PubMed][Cross Ref]
  13. Ebner T, Yaman C, Moser M, Sommergruber M, Polz W, Tews G. Embryo fragmentation in vitro and its impact on treatment and pregnancy outcome. Fertil Steril. 2001;76:281–5. doi: 10.1016/S0015-0282(01)01904-5. [PubMed] [Cross Ref]
  14. Steer CV, Mills CL, Tan SL, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod. 1992;7:117–9. [PubMed]
  15. Raziel A, Schachter M, Strassburger D, Bern O, Ron-El R, Friedler S. Favorable influence of local injury to the endometrium in intracytoplasmic sperm injection patients with high-order implantation failure. Fertil Steril. 2007;87(1):198–201. [PubMed]
  16. The effect of endometrial injury on ongoing pregnancy rate in unselected subfertile women undergoing in vitro fertilization: a randomized controlled trial. Yeung TW, Chai J, Li RH, Lee VC, Ho PC, Ng EH. Hum Reprod. 2014 Nov; 29(11):2474-81. Epub 2014 Sep 8.
  17. Trninić-Pjević A, Kopitović V, Pop-Trajković S, Bjelica A, Bujas I, Tabs D, et al. Effect of hysteroscopic examination on the outcome of in vitro fertilization. Vojnosanit Pregl Mil-Med Pharm Rev. 2011;68(6):476–80. [PubMed]
  18.  Karimzade MA, Oskouian H, Ahmadi S, Oskouian L. Local injury to the endometrium on the day of oocyte retrieval has a negative impact on implantation in assisted reproductive cycles: a randomized controlled trial. Arch Gynecol Obstet. 2010;281(3):499–503. doi: 10.1007/s00404-009-1166-1.
  19. Shufaro Y, Simon A, Laufer N, Fatum M. Thin unresponsive endometrium–a possible complication of surgical curettage compromising ART outcome. J Assist Reprod Genet. 2008;25(8):421–425. doi: 10.1007/s10815-008-9245-y.
Gravidanza, PMA

Infezione da virus Zika in gravidanza e tecniche PMA

Il virus Zika (ZIKV) è un RNA-virus simile al virus della febbre gialla, della dengue, dell’encefalite giapponese e dell’encefalite del Nilo occidentale. Isolato per la prima volta nel 1947 da un gorilla in Uganda, nella Foresta Zika, una riserva naturale vicino ad Entebbe. Negli ultimi anni la malattia si è diffusa in tutti i continenti, Europa inclusa (1-4).

L’infezione umana da virus Zika (Zikv) è una malattia virale trasmessa dalla puntura di zanzare infette di alcune specie appartenenti al genere Aedes che comprendono Aedes aegypti (vettore originario, nota anche come zanzara della febbre gialla) e Aedes albopictus (più conosciuta come zanzara tigre e diffusa anche in Italia). Queste zanzare sono responsabili anche della trasmissione della dengue, della chikungunya e della febbre gialla.

L’ospite serbatoio (reservoir) è rappresentato da alcuni grandi mammiferi (gorilla, ippopotami, impala, elefanti, capre, pecore, gnu, zebre, leoni, leopardi, ghepardi) e i roditori (5-8).

 Modalità di trasmissione

La trasmissione all’uomo del virus Zika avviene generalmente tramite la puntura della zanzara vettore. Il soggetto punto da una zanzara portatrice e nuovamente punto da una zanzara non infetta, può innescare una catena in grado di dare origine a un focolaio endemico. Il contagio interumano è possibile e può avvenire attraverso i rapporti sessuali, ferite e trasfusioni.

Sono ancora incerti il trimestre a maggior rischio per lo sviluppo di microcefalia fetale, la durata della viremia nel liquido seminale maschile; il ruolo dei maschi asintomatici nella trasmissione sessuale, il ruolo di differenti specie di zanzare come potenziali vettori competenti del virus Zika (9-12).

 Sintomi

Si stima che nell’80% dei casi l’infezione sia asintomatica. I sintomi, quando presenti, sono simili a quelli di una sindrome simil influenzale autolimitante, della durata di circa 4-7 giorni, a volte accompagnata da rash maculo papulare, artralgia, mialgia, mal di testa e congiuntivite. Compaiono a distanza di 3-13 giorni dalla puntura della zanzara vettore. Raramente è necessario il ricovero in ospedale.

 Diagnostica di laboratorio: 

la diagnosi di certezza si ottiene tramite la reazione a catena della polimerasi inversa (PCR) e l’isolamento del virus dal sangue del malato. La diagnosi sierologica è, purtroppo, complicata da possibili reazioni crociate con altri Flavivirus

 Nelle regioni colpite dall’infezione, è stato anche osservato un aumento dei casi di sindrome di Guillain-Barré, una poliradicolonevrite acuta (neuropatia, sindrome del sistema nervoso) sostenuta da meccanismi autoimmuni che si manifesta con paralisi progressiva agli arti (in genere prima le gambe e poi le braccia) e che spesso fa seguito a un’infezione batterica o virale. Inoltre è stato registrato un aumento delle nascite di bambini con microcefalia congenita (13-18).

Trasmissione materno-fetale: E’ possibile la trasmissione materno-fetale; infatti è stata dimostrata  la capacità del VIKV di attraversare la barriera placentare come pure l’evato tropismo dello stesso per le cellule neuronali. L‘infezione da questo virus nelle donne gravide può determinare microcefalia fetale e malformazioni. Nel 2015, nel nord del Brasile vi è stato un incremento molto importante dei casi di microcefalia, la cui causa sembra essere in stretta relazione con l’infezione da Zika virus nelle donne incinte, anche asintomatica. Possono inoltre osservarsi agiria (mancanza delle circonvoluzioni cerebrali), idrocefalo, calcificazioni distrofiche multifocali nella corteccia e sostanza bianca sottocorticale (8-12).

Prevenzione

Non esistono, al momento, né vaccini né terapie preventive. L’unico modo per prevenire l’infezione è evitare di essere punti dalla zanzare vettrici. I residenti o i viaggiatori in un Paese in cui il virus è presente, possono adottare misure di protezione coprendo la pelle esposta con abbigliamento adeguato (maniche lunghe e pantaloni lunghi) soprattutto nelle ore diurne, usare repellenti, adottare barriere fisiche (porte, finestre, zanzariere) e pernottare in luoghi protetti da zanzariere. Una particolare attenzione va dedicata alle persone che non sono in grado di proteggersi autonomamente (bambini, anziani, malati).

 A titolo precauzionale, gli esperti raccomandano a tutte le donne in stato di gravidanza o che non escludono a breve il concepimento, di:

  • di valutare la possibilità di rimandare programmi e piani di viaggio nei Paesi colpiti dalla trasmissione del virus (Brasile, Colombia, El Salvador, Guyana francese, Guatemala, Haiti, Honduras, Martinica, Messico, Panama, Paraguay, Porto Rico, Repubblica Dominicana, Suriname e Venezuela)
  • adottare le misure di protezione individuale contro le punture di zanzara come zanzariere,  i repellenti a base di DEET, picaridin e IR3535 ritenuti sicuri anche in gravidanza.
  • ritornando da viaggi in aree a rischio, dare subito notizia del viaggio nel corso delle visite prenatali, al fine di poter essere valutate e monitorate in modo appropriato.

Terapia

è basata su riposo, idratazione e, se necessario, antipiretici (paracetamolo) per la febbre, la cefalea e i dolori osteo-muscolari. 

 Sorveglianza e monitoraggio 

In Italia, la sorveglianza dei casi di malattia da virus Chikungunya, Dengue e Zika è regolata dal “Piano nazionale di sorveglianza e risposta alle arbovirosi trasmesse da zanzare (Aedes sp.) con particolare riferimento a virus Chikungunya, Dengue e virus Zika  pubblicato il 16 giugno 2016 dal ministero della Salute. Nonostante il sistema di sorveglianza dei casi umani sia attivo tutto l’anno, nel periodo di maggiore attività vettoriale (1 giugno-31 ottobre) viene potenziato su tutto il territorio nazionale per permettere l’identificazione rapida dei casi e l’eventuale adozione immediata delle necessarie misure di controllo. A questo proposito, il Piano fornisce agli operatori sanitari indicazioni precise sulle procedure di segnalazione dei casi sospetti. Riguardo alla sorveglianza entomologica e alla valutazione dei diversi livelli di rischio di trasmissione, il documento sottolinea che Regioni e Comuni sono responsabili di effettuare tempestivamente le attività per il controllo delle zanzare invasive, applicando le raccomandazioni riportate (interventi di riduzione dei focolai larvali, interventi ordinari di controllo con prodotti larvicidi e interventi con uso di adulticidi in situazioni di elevata densità del vettore, ecc) (13-25).

Isaac Benjamin per primo (26) ha recentemente descritto, e altri studi hanno successivamente confermato, la trasmissione del ZKV anche attraverso le tecniche di fecondazione in vitro e inseminazione artificiale (IUI). Il virus Zika è stato ritrovato nel liquido amniotico e nel sangue del cordone ombelicale di feti concepiti con tecnica FIVET/ICSI. Alla scansione USG i feti presentavano microcefalia e ventricolomegalia.

I medici specialisti in tecniche di riproduzione assistita (ART) sono caricati del difficile compito di fornire consulenza significativa in merito alla grandezza del rischio a seguito dell’esposizione, della trasmissione e della probabilità di malformazioni fetali basate su dati estremamente limitati.  In particolare, le linee guida del Disease Control and Prevention (CDC) US Department of Health and Human Services 2016,  raccomandano che i test di routine per ZIKV RNA siano resi obbligatori per le coppie sottoposte a tecniche PMA considerato il distress e l’alto costo che la PMA impone  (26-31).

Bibliografia: 

  1. ^Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC, Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage, in PLoS Negl Trop Dis, vol. 6, nº 2, 2012, pp. e1477,
  2. ^ Kuno G, Chang GJ, Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses, in Arch. Virol., vol. 152, nº 4, 2007, pp. 687–96, DOI:10.1007/s00705-006-0903-
  3. Pinto Junior VL, Luz K, Parreira R, Ferrinho P, [Zika Virus: A Review to Clinicians], in Acta Med Port, vol. 28, nº 6, 2015, pp. 760–5, PMID 26849762.
  4. ^Gatherer D, Kohl A, Zika virus: a previously slow pandemic spreads rapidly through the Americas, in J. Gen. Virol., 2015, DOI:10.1099/jgv.0.000381PMID 26684466
  5. ^ Hayes EB, Zika virus outside Africa, in Emerging Infect. Dis., vol. 15, nº 9, 2009, pp. 1347–50,
  6. ^ Marcondes CB, Ximenes MF, Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes, in Rev. Soc. Bras. Med. Trop., 2015,
  7. ^ Robert W. Malone, Jane Homan e Michael V. Callahan, Zika Virus: Medical Countermeasure Development Challenges, in PLOS Negl Trop Dis, vol. 10, nº 3, 02 marzo 2016, pp. e0004530,
  8. Testing for Zika virus infection in pregnancy: key concepts to deal with an emerging epidemic. Eppes C, Rac M, Dunn J, Versalovic J, Murray KO, Suter MA, Sanz Cortes M, Espinoza J, Seferovic MD, Lee W, et al.Am J Obstet Gynecol. 2017 Mar; 216(3):209-225. Epub 2017 Jan 23. 
  9. Pathology of congenital Zika syndrome in Brazil: a case series. Martines RB, Bhatnagar J, de Oliveira Ramos AM, Davi HP, Iglezias SD, Kanamura CT, Keating MK, Hale G, Silva-Flannery L, Muehlenbachs A, et al.Lancet. 2016 Aug 27; 388(10047):898-904. Epub 2016 Jun 29. 
  10. Pregnant women carrying microcephaly foetuses and Zika virus contain potentially pathogenic microbes and parasites in their amniotic fluid. Tschoeke DA, de Oliveira LS, Leomil L, Tanuri A, Thompson FL.BMC Med Genomics. 2017 Jan 11; 10(1):5. Epub 2017 Jan 11. 
  11. Racicot K, Mor G.: Risks associated with viral infections during pregnancy. J Clin Invest. 2017 May 1;127(5):1591-1599.
  12. Racicot K, Aldo P, El-Guindy A, Kwon JY, Romero R, Mor G Cutting Edge: Fetal/Placental Type I IFN Can Affect Maternal Survival and Fetal Viral Load during Viral Infection. .J Immunol. 2017 Apr 15; 198(8):3029-3032. 
  13. ^ Edward B. Hayes, Zika Virus Outside Africa, in Emerging Infectious Diseases, vol. 15, nº 9, 1º settembre 2009, pp. 1347–1350,
  14. ^ John GT, Thomas PP, Kirubakaran MG, Thomas M, Jacob CK, Shastry JC, Methylprednisolone sodium succinate-induced anaphylaxis in a nonatopic renal transplant recipient, in Transplantation, vol. 48, nº 3, 1989, pp. 543,
  15. ^ Brian D. Foy, Kevin C. Kobylinski e Joy L. Chilson Foy, Probable Non–Vector-borne Transmission of Zika Virus, Colorado, USA, in Emerging Infectious Diseases, vol. 17, nº 5, 1º maggio 2011, pp. 880–882,
  16. Grard G, Moureau G, Charrel RN, Holmes EC, Gould EA, de Lamballerie X, Genomics and evolution of Aedes-borne flaviviruses, in J. Gen. Virol., vol. 91, Pt 1, 2010, pp. 87–94,
  17. ^ Peter I. Whelan et Julie Hall, « Zika virus disease »,Northern Territory Disease Control Bulletin, vol. 15, no 1, 2008, p. 19-20
  18. ^Hayes EB, Zika virus outside Africa, in Emerging Infect. Dis., vol. 15, nº 9, 2009, pp. 1347–50,
  19. ^ Wong PS, Li MZ, Chong CS, Ng LC, Tan CH, Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore, in PLoS Negl Trop Dis, vol. 7, nº 8, 2013, pp. e2348,
  20. ^ Besnard M, Lastere S, Teissier A, Cao-Lormeau V, Musso D, Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014, in Euro Surveill., vol. 19, nº 13, 2014,
  21. ^ Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM, Potential sexual transmission of Zika virus, in Emerging Infect. Dis., vol. 21, nº 2, 2015, pp. 359–61,
  22. ^ Ginier M, Neumayr A, Günther S, Schmidt-Chanasit J, Blum J, Zika without symptoms in returning travellers: What are the implications?, in Travel Med Infect Dis, vol. 14, nº 1, 2016, pp. 16–20,
  23. McCarthy M, Zika virus was transmitted by sexual contact in Texas, health officials report, in BMJ, vol. 352, 2016, pp. i720, PMID 26848011.
  24. Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, Araujo ES, de Sequeira PC, de Mendonça MC, de Oliveira L, Tschoeke DA, Schrago CG, Thompson FL, Brasil P, Dos Santos FB, Nogueira RM, Tanuri A, de Filippis AM, Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study, in Lancet Infect Dis, 2016,
  25. Schuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DD, Cavalcanti DP, Pessoa A, Doriqui MJ, Neri JI, Neto JM, Wanderley HY, et al. Possible Association Between Zika Virus Infection and Microcephaly – MMWR Morb Mortal Wkly Rep. 2016 Jan 29; 65(3):59-62. 
  26. Benjamin, I., Fernández, G., Figueira, J.V., Parpacén, L., Urbina, M.T., and Medina, R. Zika virus detected in amniotic fluid and umbilical cord blood in an IVF-conceived pregnancy in Venezuela.Fertil Steril. 2017; 107: 1319–1322
  27. Centers for Disease Control and Prevention. Preconception counseling for women and men living in areas with ongoing spread of Zika virus who are interested in conceiving. Atlanta: CDC, US Department of Health and Human Services. 2016. Available at: https://www.cdc.gov/zika/pdfs/preconception-counseling.pdf. Accessed April 3, 2017.
  28. Reynolds, M.R., Jones, A.M., and Peterson, E.E. Vital signs: update on Zika virus-associated birth defects and evaluation of all U.S. infants with congenital Zika virus exposure—U.S. Zika Pregnancy Registry, 2016. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep. 2017; 66: 366–373
  29. World Health Organization. Situation report: Zika virus, microcephaly, Guillain-Barre syndrome. 2017. Available at: http://apps.who.int/iris/bitstream/10665/254714/1/zikasitrep10Mar17-eng.pdf. Accessed April 4, 2017.
  30. American Society for Reproductive Medicine. Guidance for providers caring for women and men of reproductive age with possible Zika virus exposure. ASRM guidelines document. Available at: http://www.asrm.org/globalassets/asrm/asrm-content/news-and-publications/practice-guidelines/for-nonmembers/asrm_zikaguidance_09-13-16.pdf. Accessed April 4, 2017.
  31. Chantel I. Washington CrossJames H. Segars,   Preconception assisted reproductive technology counseling in the age of Zika Fertl Steril  June 2017 Volume 107, Issue 6, Pages 1296–1297
Eco, PMA

Ecografia della sterilità

L’ultrasonografia (USG) ginecologica ha conquistato un ruolo assolutamente indispensabile nello studio delle patologie organiche e funzionali interessanti la sterilità di coppia. Le sue principali applicazioni riguardano la valutazione degli organi pelvici, la valutazione del ciclo ovarico, maturazione endometriale, il monitoraggio dello sviluppo follicolare sia in cicli spontanei che indotti, il pick-up ovocitario e il transfer ecoguidato intrauterino degli embrioni per via transcervicale. La valutazione ecografica iniziale di una paziente sterile viene effettuata soprattutto durante la fase follicolare del ciclo  ma anche in fase ovulatoria e luteale al fine di identificare eventuali fattori uterini (malformazioni uterine e difetto di maturazione endometriale soprattutto ma anche iperplasia e polipi endometrialiadenomiosi, Ascherman, fibromatosi), ovarici (ovulazione/disovulazione/anovulazione, PCOS, LUF-syndrome, cisti), tubarici (occlusione, stenosi, atrofia, distrofia, malposizione, pio-sactosalpingi, endometriosi) e cervicali (stenosi, accorciamento del canale cervicale) di sterilità.

L’esame ecografico degli organi pelvici femminili è comunemente eseguito utilizzando due diversi approcci. Il primo è transaddominale, il secondo, più recente, è transvaginale (1-3).  Un terzo metodo, transperineale, è impiegato in genere nelle bambine e nelle giovani vergini (4-6). Le tecniche sono complementari, non si escludono a vicenda.

RIEMPIMENTO VESCICALE – L’esame ecografico della pelvi femminile per via trans-addominale richiede lavescica distesa in modo ottimale. La vescica eccessivamente piena induce eccessivo disagio ed inoltre, la vescica overdistended può spingere le strutture bersaglio così lontano dal trasduttore da peggiorarne la scansione. La vescica scarsamente piena è causa di artefatti (near-field artifacting) perchè insufficiente ad allontanare i gas intestinali dal perimetro degli organi esaminati. Ci sono casi di USG addominale in cui la vescica vuota produce risultati migliori rispetto alla vescica piena:  grossi fibromi fundici. 

L’ecografia transvaginale (o endovaginale) viene generalmente eseguita con la vescica vuota. Ci sono occasioni in cui l’esame ecografico transvaginale (ETV) può produrre risultati migliori con la vescica piena; tale è il caso della misurazione della lunghezza del canale cervicale, del fenomeno del “funneling”, incompetenza cervicale e nell’osservazione della placenta previa o marginale.  

MANIPOLAZIONE – le manipolazioni sono eseguite per spostare o ruotare le strutture bersaglio in modo da poterle valutare con angoli di incidenza diversi allo scopo di ottenere informazioni che la classica scansione non è in grado di fornire. 

PRESSIONE DELLA SONDA –  una pressione eccessiva sulla sonda può dare risultati negativi come ad esempio nel monitoraggio follicolare in cui una pressione eccessiva, comprimendo il follicolo, fornisce dati alterati sulla volumetria.  Una insufficiente pressione comporta il rischio di includere nell’esame  tessuti adiacenti alle strutture bersaglio.

POSIZIONAMENTO DELLA SONDA – Il corretto posizionamento della paziente migliora la qualità dell’esame. Quando si esegue ETV è opportuno collocare la paziente in posizione ginecologica e con il piano vulvare quanto più possibile vicino alla fine del lettino per facilitare l’escursione verso il basso del manico della sonda. Occasionalmente, ponendo una gamba della paziente sulla spalla dell’esaminatore è possibile una scansione controlaterale più profonda.  Inoltre, alcune  scansioni ETV danno migliori risultati in posizione genu-pettorale (6-8). 

*******************************************************************************************************************

INDICE

*******************************************************************************************************************

OVAIE

 Il fattore ovarico è coinvolto nel 10-20% dei casi di sterilità; l’esame ecografico consente di individuare alterazioni della normale funzionalità ovarica: anovulazione, insufficienza della fase luteale, sindrome del follicolo luteinizzato non rotto (LUF-Syndrome), cisti ovariche o paraovariche, endometriosi ovarica, ovaie multifollicolari e micropolicistosi ovarica (PCOS).

Le ovaie topofraficamente, in condizioni di normalità, sono situate su entrambi i lati dell’utero, anche se posizioni superiori o posteriori all’utero non sono infrequenti. Talvolta, in cicli non stimolati, si può avere difficoltà a individuare le ovaie; in tal caso una ricerca lungo l’arteria iliaca interna può rivelarsi utile. L’ovaio è spesso situato anteriormente alla biforcazione dell’a. iliaca comune (7-10). 

L’irrorazione arteriosa è fornita dall’a. ovarica che origina dall’aorta addominale, appena caudalmente alle arterie renali, ed entra nel bacino attraverso il legamento infundibulo-pelvico. Raggiunge l’ilo ovarico e penetra nell’ovaio attraverso il mesovario. Da ognuna delle due arterie ovariche provengono rami primari e secondari. Questi ultimi sono disposti a spirale in modo da seguire l’estensione dei follicoli in crescita. L’irrorazione ovarica si avvale anche di un ramo arterioso per ciascun lato proveniente dall’a. uterina. e che si anastomizza con i rami terminali dell’a. ovarica omolaterale (11-15).

Durante l’età fertile, le ovaie subiscono variazioni morfovolumetriche correlate allo sviluppo ciclico ed atresia dei follicoli (8). Le normali dimensioni di un ovaio in età fertile sono 2,2-2,9 cm di lunghezza, 1,52,0 cm di larghezza e 1,5-3,0 cm di spessore (dimensione antero-posteriore) (11-14).

Le dimensioni follicolari medie variano da un minimo di 1-2 mm al 3° giorno del ciclo a 18-22 mm in periodo pre-ovulatorio con un range di 17-27 mm. Le dimensioni follicolari sono calcolate effettuando la media dei due diametri massimi  (17,18).  Dall’8-9° giorno inizia la selezione del follicolo dominante che in tali giorni misura 8-10 mm.   L’ovulazione ha una cadenza variabile per cui dal momento in cui si individua un follicolo di 15-16 mm, è necessario un monitoraggio follicolare quotidiano per individuare esattamente il giorno dell’ovulazione che in genere avviene al 14° giorno di un ciclo spontaneo con espulsione dell’ovocita e del liquido follicolare.  L’avvenuta ovulazione è testimoniata dalla trasformazione del profilo follicolare che da rotondo diventa irregolare e dalla presenza nel cavo del Douglas di una falda liquida (fluido follicolare) che è massima 4-5 giorni dopo l’ovulazione.     

Nei cicli di procreazione medica assistita a bassa tecnologia, che non prevedono il pick-up ovocitario, lo scopo del monitoraggio follicolare è l’adeguamento della stimolazione in base alla risposta ovarica o la sospensione della stessa in caso di risposta ovarica inadeguata  (<3 follicoli con diametro medio >16 mm) eccessiva (>15 follicoli di diametro >16 mm) ed il timing della somministrazione dell’hCG per indurre l’ovulazione. 

Nei programmi FIV/ICSI, che prevedono il prelievo ovocitario, il monitoraggio oltre che ecografico è anche endocrino, attraverso la valutazione dei livelli di 17-β-estradiolo. ed LH.  Lo sviluppo follicolare viene monitorato dal 6-8° giorno del ciclo individuando il momento più idoneo alla somministrazione dell’hCG che in genere è individuato nel giorno in cui almeno 2-3 follicoli raggiungono i 16-18 mm di diametro e i livelli di 17-β-estradiolo sono di 250 pg/ml per il primo follicolo maturo più 150 pg/ml per ogni ulteriore follicolo con diametro >14 mm. Calcolare il diametro medio di tutti i follicoli può risultare difficoltoso data la loro molteplicità e la compressione reciproca che distorce i contorni follicolari. Tale problema potrebbe essere superato con l’utilizzo dell’ecografia 3D e con la tecnica VOCAL (Virtual Organ Computer-Aided analysis) in  grado di misurare in tempo reale i diametri ed il volume follicolare. Il volume ovarico al giorno dell’HCG e la conta dei follicoli antrali al 3° giorno del ciclo sono fattori predittivi importanti per l’otcome ovocitario. Infatti ovaie di piccole dimensioni e un ridotto numero di follicoli antrali al 3° giorno sono associati a scarsa risposta all’hCG e ad un’alta percentuale di sospensione del ciclo mentre un volume follicolare medio di 5-7 ml o un diametro medio di 18-20 mm sono predittivi di un buon outcome ovocitario  (21).

Con il color-power Doppler è possibile studiare la vascolarizzazione perifollicolare che appare più marcata attorno al follicolo dominante sì da configurare un frame noto come “ring of fire”. alla scansione con Doppler pulsato le arterioli spirali perifollicolari mostrano un’alta impedenza e bassa velocità.  

Gli indici di vascolarizzazione dell’ovaio dominante, del follicolo dominante e del corpo luteo, valutati con il 3D power Doppler, aumentano durante la fase follicolare restando alti anche dopo la rottura del follicolo e la formazione del corpo luteo. Ciò è dovuto alla formazione di nuovi vasi e all’aumento di fattori angiogenetici.   

 Il follicolo rotto si trasforma in corpo luteo il cui scopo principale è quello di fornire progesterone per la decidualizzazione endometriale e il mantenimento di un’eventuale gravidanza (19-22). L’ovulazione multipla è un evento che si verifica in circa il 5% per cento dei cicli non stimolati. (19). Il corpo luteo persiste e si ipertrofizza in caso di gravidanza mentre degrada a corpus albicans in assenza di gravidanza (23). Il corpo luteo può simulare un endometrioma, un ascesso, una neoplasia o una gravidanza extrauterina (24).  Il Color Doppler è in grado di dimostrare la neovascolarizzazione all’interno della parete del corpo luteo (21-24). 

La flussimetria dell’a. ovarica presenta variazioni durante le fasi di un ciclo mestruale normale. In generale, i valori di indice di pulsatilità (PI) di questa arteria sono relativamente elevati durante la fase follicolare iniziale. Essi diminuiscono progressivamente nella fase pre-ovulatoria e luteale precoce per aumentare di nuovo durante la fase luteale tardiva (25-27).  L’indice di resistenza (IR) medio presenta un diagramma simile al PI. Infatti  in periodo follicolare precoce  l’IR è 0,54 +/- 0,04 e quindi inizia a diminuire per raggiungre il nadir di 0,44 +/- 0,04 in fase luteale precoce per risalire a 0,50 +/- 0,04 nel periodo luteale tardivo. Differenze statisticamente significative  sono state dimostrate fra ovaio ovulatorio e non ovulatorio perchè quest’ultimo presenta minori oscillazioni cicliche e valori di impedenza arteriosa più elevati (25-27).  

—————————————————————————————————————————————————–

UTERO

 Il fattore uterino è responsabile nel 9,5% dei casi di sterilità. Attraverso l’esame ecografico è possibile identificare la presenza di malformazioni uterine, patologie miometriali e/o endometriali. L’esame ultrasonografico del canale cervicale permette di valutare la presenza di formazioni che possono impedirne la pervietà. La valutazione ecografica della lunghezza cervicale riveste un ruolo di primo piano nella diagnosi di incompetenza cervico-istmica

L’utero si trova nella piccola pelvi tra la vescica urinaria e il retto. Sebbene sia generalmente una struttura mediana, deviazioni laterali dell’utero non sono rare. I legamenti larghi si estendono dalle pareti laterali dell’utero alle pareti pelviche. Essi contengono le tube di Falloppio e vasi. I legamenti uterosacrali servono a mantenere l’utero in posizione anteriore. Nascono posteriormente dalla cervice e si estendono alla fascia della seconda e terza vertebra sacrale. I legamenti rotondi originano dalla parete anteriore dell’utero, al di sotto delle tube di Falloppio e attraversano il canale inguinale per terminare nella parte superiore delle grandi labbra (82). L’isterometria normale in età feconda è 7-8 cm di lunghezza, 4,5-6,0 cm di larghezza e 2,5-3.5 cm di profondità (dimensione antero-posteriore) (82). Il rapporto corpo/collo è 2:1 (82, 83).  L’irrorazione ematica uterina è fornita dall’arteria uterina, un ramo dell’arteria iliaca interna. L’a. uterina raggiunge l’utero a livello della giunzione cervico-corporale e, mentre fornisce rami collaterali perforanti che si anastomizzano con quelli controlaterali, sale lungo la parete laterale del corpo uterino fino all’angolo cornuale dove si suddivide in arteria tubarica e rami ovarici che si anastomizzano con i corrispondenti rami arteriosi derivati dall’a. ovarica  (84-85).

L’afflusso di sangue all’endometrio deriva da rami delle arterie uterine: aa. arcuate, radiali, basali e spirali,  in successione. I rami basali o rettilinei irrorano lo strato basale dell’endometrio mentre i rami a spirale, detti anche arterie spirali, attraversano l’endometrio e irrorano lo strato functionalis. Le arterie spirali a differenza delle arterie basali, sono notevolmente sensibili alle variazioni ormonali del ciclo mestruale e il loro studio flussimetrico consente una valutazione predittiva dell’outcome gravidico (86,87).

L’endometrio presenta caratteristiche variazioni di forma (pattern) e spessore (thickness) in relazione ai cambiamenti ormonali.   Con approccio transvaginale è possibile una valutazione qualitativa dell’endometrio associato alla misurazione del suo spessore. In fase mestruale l’endometrio appare lineare ed iperecogeno, durante la fase proliferativa diventa iposonico e si ispessisce misurando al 7-8° giorno circa 5-7mm; raggiunge uno spessore di circa 8-12 mm in fase periovulatoria con aspetto ecografico a “tre linee”. Dopo l’ovulazione diventa omogeneamente iperecogeno e aumenta di spessore per poi ridursi nella fase luteale tardiva fino alla mestruazione.

 Schematicamente si può affermare che il flusso arterioso aumenta in correlazione con le concentrazioni sieriche di estrogeni e progesterone e diminuisce con la caduta post-ovulatorio di estrogeni (92-94). I più bassi valori di PI si osservano in periodo pre-ovulatorio e in periodo luteale middle-luteale (92-94). In generale, i valori di PI dell’arteria uterina omolaterale all’ovaio contenente il follicolo ovulatorio sono inferiori a quelli dell’arteria controlaterale (87-91).

————————————————————————————————————————————————

IPERPLASIA E POLIPI ENDOMETRIALI

Le iperplasie e i polipi uterini, sono legati ad un’anomala proliferazione endometriale. Uno stimolo estrogenico prolungato sull’endometrio, anche se di modesta entità, non adeguatamente bilanciato dal progesterone, può determinare lo sviluppo di iperplasia endometriale o di poliposi endometriale. Condizioni di questo tipo si verificano spesso nelle pazienti infertili affette da policistosi ovarica. 

Le iperplasie endometriali possono essere classificate in: iperplasia ghiandolare cistica, iperplasia semplice, con o senza atipie, iperplasia complessa, con o senza atipie. Le iperplasia semplice e complessa sono il risultato di una stimolazione estrogenica presente non bilanciata dal progesterone. All’USG transvaginale l’endometrio appare ispessito in maniera uniforme e marcatamente iperecogeno rispetto al miometrio circostante. L’iperplasia ghiandolare cistica, tipo “swess cheese”, è il frutto di una pregressa stimolazione estrogenica, poi cessata, che ha indotto una dilatazione ghiandolare su endometrio in via di atrofia. All’ecografia transvaginale sono visibili, all’interno dello spessore endometriale, piccole formazioni rotondeggianti anecogene riferibili ad accumuli di muco nelle ghiandole iperplastiche. La diagnosi differenziale tra i tipi istologici di iperplasia non è comunque possibile ecograficamente. Alcazar  ha riportato un pattern vascolare identificativo di iperplasia caratterizzato da vasi sparsi (scattering) all’interno dell’endometrio (169).

I polipi endometriali sono neoformazioni, uniche o multiple, spesso causa di sanguinamenti anomali. Possono interessare ogni fascia d’età; nella maggior parte dei casi si sviluppano tra i 30 e 60 anni e sono patologie comuni durante la menopausa. Nelle donne in età riproduttiva anche piccoli polipi possono ridurre la fertilità ed aumentare il rischio di abortoSebbene rappresentino un’entità prevalentemente benigna, nel 2-3% dei polipi endometriali è stata riscontrata la presenza di carcinomaShushan riporta una incidenza di malignità su polipo endometriale di 1.5%, sottolineando l’importanza di rimuovere anche i polipi asintomatici (170).

Sotto l’influenza ormonale, l’endometrio si ipertrofizza e le ghiandole endometriali si allungano, il tessuto stromale e le arterie spirali seguono lo sviluppo endometriale e contribuiscono a dare al polipo il suo caratteristico aspetto. La congestione stromale conduce ad una stasi venosa causando necrosi apicale e sanguinamento. Tuttavia, per la lentezza con cui questo processo avviene, molti polipi restano asintomatici e per lungo tempo non diagnosticati e spesso la loro individuazione è del tutto occasionale. Ecograficamente i polipi endometriali si presentano come masse iperecoiche omogenee, a margini netti, di grandezza variabile, con o senza spazi cistici, che alterano la linea mediana endocavitaria, senza interruzione dell’interfaccia miometrio-endometrio. I polipi endometriali possono essere sessili o peduncolati. Per l’identificazione dei polipi l’ecografia dovrebbe essere eseguita in fase proliferativa iniziale. In fase luteale, infatti, l’endometrio, di tipo secretivo, presenta la stessa ecogenicità dei polipi.

“Feeding vessel sign”

I polipi possiedono un peduncolo vascolare che origina dall’arteria uterinaw, che si sfiocca e circonda completamente la ghiandola endometriale: feeding vessel sign. L’ecografia, con l’utilizzo della tecnica color o power Doppler, permette l’individuazione di questo peduncolo vascolare, rappresentato o da un singolo vaso o da più rami arteriosi, centrali, originanti da una singola arteria spirale subendometriale. Il power Doppler è la tecnica meglio indicata per lo studio di questo tipo di vascolarizzazioni in quanto è in grado di rivelare flussi a velocità molto bassa e con direzione perpendicolare all’angolo di insonazione. Il suo utilizzo ha notevolmente migliorato la sensibilità diagnostica dell’ecografia nell’identificazione dei polipi. Timmermann ha sottolineato come l’utilizzo del power Doppler incrementi il valore predittivo positivo dell’USG TV portandolo a 81.3% per i polipi endometriali e al 94,2% per le altre patologie intracavitarie (171). Jakab ha riportato una detection rate per il feeding vessels di 0.97 nelle pazienti asintomatiche e di 0.91 nelle pazienti sintomatiche (172-174).

Il rilievo dei caratteristici pattern di vascolarizzazione delle lesioni intracavitarie, senza o con sonoisterografia, risulta in un alto detection rate delle lesioni endometriali focali, con l’effettiva possibilità di distinzione tra polipi e fibromi. Alcuni autori hanno sottolineato come dallo spettro Doppler del feeding vessels fosse possibile sospettare un’atipia indicando nel flusso a bassa resistenza un’alta predittività per polipo atipico. Un’irregolare diffusione della vascolarizzazione è indice altamente predittivo di carcinoma endometriale (174-178)

————————————————————————————————————————————————-

FIBROMI UTERINI – I leiomiomi possono essere associati con l’infertilità a causa della difficoltà di attecchimento endometriale nei casi di miomi sottomucosi e dell’alta percentuale di aborti spontanei che colpisce le gravidanze di donne con leiomiomi (124, 125). 

Agli ultrasuoni il mioma appare come una formazione rotondeggiante, nettamente delimitata dai tessuti circostanti con ecogenicità variabile da ipo a iperecogena. Per lo studio ecografico del mioma è utile un alto guadagno. Nei fibromiomi con marcata degenerazione la transonicità è simile a quella delle neoformazioni cistiche mentre la presenza di calcificazioni determina echi iperecogeni con cono d’ombra acustico posteriore. 

Il mioma sottomucoso si presenta come una formazione solida, rotondeggiante, con una ecogenicità simile al miometrio, più o meno omogeneo, in continuità con il miometrio stesso ma protrudente nella cavità endometriale, interrompendo l’interfaccia miometrio-endometrio. 

I miomi sottomucosi sono classificati secondo l’”European Society of Gynecologic Endoscopy” in: tipo 0 (mioma sottomucoso peduncolato senza estensione intramurale); tipo I (mioma sessile con una componente intramurale inferiore al 50%), tipo II (mioma con una componente intramurale superiore al 50%. 

Nella diagnosi differenziale dei fibromiomi, soprattutto quando di piccole dimensioni, rientrano i polipi endometriali, le raccolte di muco o i coaguli intracavitari. La vascolarizzazione studiata con power Doppler mostra, meglio se con l’ausilio della sonoisterografia, il pattern tipico del mioma sottomucoso con più vasi originanti dal miometrio stesso. Anche se i fibromi sono generalmente ben evidenziabili alla scansione USG con scala di grigi, i loro margini non sono sempre ben delimitati e possono quindi comportare dubbi diagnostici. In tal caso il ricorso al color doppler permette di evidenziare il letto vascolare che circonda il mioma, rendendo localizzazione e misurazione del mioma più accurate.

Nelle pazienti sottoposte a trattamento medico con Analoghi del GN-RH (Gn-RH-a) per ridurre le dimensioni del fibroma e il flusso di sangue prima della rimozione chirurgica o tentativo di fecondazione in vitro, si osserva un aumento dell’impedenza di circolo Ciò suggerisce che qualsiasi riduzione delle dimensioni del fibroma può essere correlato alla riduzione, ipoestrogenica mediata, del flusso sanguigno (128-131). 

———————————————————————————————————————————————-

SINDROME DI ASCHERMAN

La sindrome di Asherman è definita come la presenza di sinechie permanenti intrauterine obliteranti parzialmente o completamente la cavità uterina. La più comune causa è la dilatazione e curettage in caso di aborto, con una incidenza riportata del 14 e 32% rispettivamente dopo 2 e 3 D&C con più del 50% di adesioni severe. Le donne infertili vengono spesso sottoposte a revisioni cavitarie multiple per abortività ripetuta. Da qui la necessità di prendere in considerazione questo tipo di ostacolo meccanico all’impianto, seppur di bassa incidenza. La sintomatologia clinica include alterazioni mestruali come ipo-amenorrea, infertilità, abortività ripetuta. Anche se alcuni autori hanno attribuito all’ecografia transvaginale una sensitività del 91% e una specificità del 100% nella identificazione di sinechie intrauterine, tale patologia è di difficile diagnosi ecografica. L’approccio isteroscopico ha apportato, invece, un rapido miglioramento nella diagnosi e nel trattamento delle obliterazioni parziali e totali. Ecograficamente nella sindrome di Asherman è possibile il rilevo di piccole aree fortemente iperecogene all’interno dell’endometrio, con possibili formazioni transoniche intracavitarie dovute all’accumulo di fluido. La mucosa endometriale può essere completamente assente o presente in aree irregolari di tessuto. La normale rima endometriale, pertanto, può presentarsi come una linea iperecogena più o meno regolare.

—————————————————————————————————————————————————

Idrosalpinge

PATOLOGIE TUBARICHE

Il fattore tubarico è responsabile del 20% dei casi di sterilità. In condizioni fisiologiche non è possibile evidenziare ecograficamente le tube; solo la presenza di patologie in cui si ha raccolta di liquido al suo interno o in cavità peritoneale, quali la salpingite acuta o cronica o una gravidanza extrauterina permettono la loro visualizzazione. Lo studio della perveità tubarica è possibile invece, anche in condizioni di normalità, con la sonoisterosalpingografia, tecnica altamente sensibile che associa alla tradizionale ecografia transvaginale l’introduzione di una soluzione salina in cavità uterina per via transcervicale. Utilizzando un mezzo di contrasto ecoriflettente ed eventualmente Color Doppler è possibile con la salpingosonografia evidenziare le patologie tubariche ed in particolare l’alterazione del decorso, posizione, direzione, stenosi, irregolarità di calibro, atresie, ematosalpingi, idrosalpingi, sactosalpingi (129-131).

————————————————————————————————————————————————–ECOGRAFIA 3D

L’ecografia tridimensionale ha apportato un significativo contributo allo studio della patologia endometriale benigna. Il piano coronale permette una visualizzazione più accurata e immediata delle lesioni intracavitarie, consentendo di valutarne il numero, la localizzazione e la base di impianto. Tra le applicazioni dell’ecografia tridimensionale sono di notevole ausilio alla diagnosi della patologia cavitaria sia l’applicazione “oblique” che la tecnica multislice. L’oblique consente, partendo da un piano, attraverso la determinazione di una finestra arbitraria, di ottenere un diverso piano di scansione contemporaneamente a quello di base; la tecnica “multislice” permette di rappresentare il volume acquisito con fette di scansione sequenziali ogni 4 mm. 

Nell’iperplasia endometriale lo studio del volume dell’endometrio con tecnica 3D rispetto alla convenzionale ecografia bidimensionale, si è mostrato maggiormente accurato. Il volume endometriale calcolato con tecnica VOCAL (Virtual Organ Computer Aided Analysis) è altamente riproducibile, soprattutto utilizzando piccoli angoli di rotazione. Alcuni autori raccomandano un angolo di 9°. La tecnica VOCAL permette la misurazione del volume endometriale mediante rotazione sui piani longitudinale, traverso e coronale. Il piano coronale è usualmente proposto per la misurazione del volume endometriale, sebbene su modelli in vitro non siano state apprezzate differenze tra il piano coronale e il traverso.

La 3D Power Doppler angiografia (3D-PDA) permette la quantificazione del flusso ematico totale dell’organo mediante l’analisi del segnale power Doppler, integrando automaticamente tre tipi di indici. L’indice di vascolarizzazione (VI) misura il numero di voxel colore in un volume. È espresso in percentuale e quantifica la densità vascolare. L’indice di flusso (FI) corrisponde al valore medio del colore in un voxel colore; indica l’intensità media del flusso di sangue ed è espressa da un numero intero da 1 a 100. L’indice di vascolarizzazione-flusso (VFI) è il valore medio del colore in tutti i voxel nel volume; esso rappresenta pertanto sia la vascolarizzazione che il flusso, indicando la perfusione del tessuto. Anche questo parametro è espresso da un numero interno tra 0 e 100. Questi indici si sono mostrati abbastanza riproducibili nella valutazione del flusso endometriale e subendometriale. L’indice di flusso si è mostrato più sensibile nella diagnosi di iperplasia endometriale che di carcinoma.

Nell’ambito della patologia uterina le malformazioni mulleriane rappresentano una causa importante, ma quasi sempre trattabile di infertilità. Dopo la sesta settimana di sviluppo embrionario, i due condotti paramesonefrici si fondono per formare il canale uterino, che include l’utero ed i quattro quinti prossimali della vagina. Inizialmente separati da un setto, alla nona settimana i dotti paramesonefrici si fondono a partire dal margine caudale, formando un unico canale utero-vaginale. La regressione del setto è il risultato dell’apoptosi mediata dal gene BC12. L’assenza di tale gene, o la sua mancata espressione, causerebbero un’alterazione di tale processo con persistenza del setto e doppia vagina. Alla dodicesima settimana l’utero normoconformato assume la sua caratteristica configurazione. La duplicazione dell’utero risulta, invece dalla mancata fusione dei dotti paramesonefrici che può essere localizzata o riguardare tutta l’estensione degli stessi, configuarando quadri variabili dall’utero arcuato all’utero didelfo. L’utero setto e l’utero bicorne rappresentano comunque le forme più frequenti di anomalie mulleriane. Le malformazioni uterine possono essere diversamente classificate. In base all’eziopatogenesi, come riportato dall’American Fertility Society nel 1998, distinguiamo:

  • agenesia, utero unicorne senza corno rudimentario, per mancato sviluppo di uno o più dotti di Muller.
  • utero unicorne con corno rudimentario senza propria cavità, per fallimento nella canalizzazione dei dotti.
  • utero didelfo, utero bicorne, per mancata o anomala fusione dei dotti mulleriani.
  • utero setto, utero arcuato, per mancato riassorbimento del setto uterino mediano.

Tutte queste malformazioni giocano un ruolo di primo piano nell’ambito dell’infertilità, ostacolando o addirittura impedendo la fecondazione e l’eventuale impianto dell’embrione, con un’incidenza nella donna infertile che oscilla dal 5 al 10%. L’utero setto nelle sue varie forme rappresenta la patologia con maggiore frequenza, (42,1%) con un’incidenza nella popolazione generale di circa il 2% e del 9-30% nelle pazienti affette da abortività ripetuta. L’utero setto influenza negativamente il decorso della gravidanza attraverso tre meccanismi: la riduzione del volume della cavità uterina, l’insufficienza cervico-istmica e l’insufficiente apporto vascolare nella sede dell’impianto. Fedele ha dimostrato, attraverso studi di microscopia elettronica, che la presenza del setto ostacola l’annidamento e lo sviluppo di una gestazione a causa della sua notevole componente fibroelastica che impedisce all’endometrio che riveste il setto di raggiungere una maturità adeguata a favorire lo sviluppo della blastocisti. Le pazienti infertili con anomalie mulleriane annoverano, oltre all’abortività ripetuta del primo trimestre, una serie di patologie che vanno dal ritardo di crescita intrauterino, al parto pretermine, alle presentazioni anomale, e, non ultima, alla ritenzione placentare. La valutazione della cavità uterina assume, quindi, un ruolo di fondamentale importanza nello studio della coppia infertile.

Di pari passo con i progressi della chirurgia endoscopica, le recenti acquisizioni in termini di imaging ecografico transvaginale  tridimensionale sembrano aprire nuovi sviluppi nello studio di tali patologie.

Le tecniche diagnostiche con cui è possibile indagare la morfologia uterina sono molteplici, dall’ecografia alla risonanza magnetica. L’isterosalpingografia è stata considerata per anni l’esame diagnostico di prima scelta, tuttavia numerosi studi presenti in letteratura hanno dimostrato i limiti di tale tecnica che non permette una diagnosi differenziale tra utero setto e bicorne. Le tecniche ecografiche a disposizione per lo studio della patologia malformativa uterina sono: l’ecografia 2D transaddominale (TA) e transvaginale (TV), l’ecografia 3D, TA e TV, il Color e Power Doppler, 2D e 3D per via transvaginale, la sonoisterografia (SIS). 

Kupesic nel 2001 ha paragonato l’ecografia TV, TV CD, SIS e 3D TV, attribuendo alla SIS e alla 3D TV specificità e valore predittivo positivo del 100% nella diagnostica della patologia malformativa uterina. Sylvestre nel 2003 ha assegnato alla SIS 2D e 3D sensibilità del 98% e specificità del 100%. Tuttavia rimane il problema della diagnosi differenziale tra l’utero setto e l’utero bicorne. Nell’utero bicorne ogni corno ha la propria cavità, col proprio endometrio, miometrio e sierosa; nell’utero setto, invece, c’è una fusione delle due componenti miometriali e un regolare, o quasi, profilo del fondo. L’importanza della diagnosi differenziale delle malformazioni uterine è legata alla possibilità di trattare le pazienti con utero setto affette da infertilità con intervento di metroplastica per via isteroscopica, incidendo in maniera significativa sulla diminuzione della percentuale di aborti spontanei e parti pre-termine e aumentando il pregnancy rate. L’identificazione di questi difetti dipende dalla capacità delle tecniche di imaging di visualizzare in maniera adeguata la superficie del fondo dell’utero. Secondo Pellerito, la diagnosi differenziale tra utero setto e utero bicorne è formulabile in base alla profondità della depressione uterina presente sul fondo uterino che, se superiore ad 1 cm, deporrebbe per l’utero bicorne, se inferiore ad un 1 cm, deporrebbe per l’utero setto. In tal caso una scansione a vescica piena potrebbe essere d’aiuto. Parimenti la diagnosi differenziale tra utero arcuato e utero subsetto potrebbe essere formulabile in base all’ampiezza dell’angolo della struttura intracavitaria che, se acuto, deporrebbe per l’utero subsetto, oppure, se ottuso, deporrebbe per l’utero arcuato.

Diversi studi hanno dimostrato che l’ecografia transvaginale tridimensionale è in grado di migliorare la sensibilità dell’ecografia. Già nel 1997 Wu et al. attraverso uno studio prospettico condotto su 40 pazienti con anamnesi di aborti ripetuti e infertilità, ha affermato che con l’USG 3D l’utero setto e il bicorne potevano essere diagnosticati correttamente nel 92% e nel 100% dei casi rispettivamente, utilizzando l’isteroscopia e/o la laparoscopia come conferma diagnostica. Alborzi, nel 2002, ha proposto una diagnosi differenziale tra utero setto e utero bicorne mediante infusione di liquido libero in peritoneo tramite SIS per definire il contorno uterino. La possibilità di rappresentazione del piano coronale è la vera grande rivoluzione ecografica dell’ecografia tridimensionale. Poter osservare un utero malformato sul piano coronale aiuta nella comprensione della condizione, nel paragone delle due emicavità, nel rapporto tra queste e la regione cervicale. Tuttavia resta ancora controversa, nella pratica clinica, la diagnosi ecografica differenziale tra utero setto e utero bicorne nei casi in cui resta non valutabile il fondo uterino. Un ambito finora inesplorato è stato la differenza in termini di vascolarizzazione tra utero setto e utero bicorne. In questo campo dal 2004 si è mossa la nostra esperienza. In uno studio preliminare condotto su 10 pazienti con utero bipartito, l’ecografia transvaginale 2D mostrava al Power Doppler in sei pazienti un particolare tipo di vascolarizzazione intercavitaria con singolo vaso mediano, mimante la lettera greca gamma. In queste sei pazienti la laporoscopia ha diagnosticato un utero bicorne. Nelle altre quattro pazienti la vascolarizzazione mediana intercavitaria appariva disarrangiata; la laparoscopia e l’isteroscopia hanno confermato un utero setto. Il segno denominato gamma sign, derivante dalla fusione di due rami delle arterie uterine, è stato pertanto ritenuto probante di utero bicorne. Dal 2004 ad oggi è continuata questa ricerca al fine di convalidare il segno ecografico capace di diagnosi differenziale tra utero setto e bicorne.

CONCLUSIONI: l’ecografia ginecologica ha contribuito notevolmente alla comprensione, identificazione, la diagnosi, il trattamento e la gestione di numerose patologie della sterilità. L’introduzione della scansione endovaginale, l’uso del doppler colore o duplex ha  rappresentato un salto di qualità nella nostra capacità di indagine. 

  REFERENCES:

  1. Darwish A.M.  · Youssef A.A. Screening Sonohysterography in Infertility Gynecol Obstet Invest 1999;48:43–47
  2. Mendelson EB, Bohm-Velez M, Joseph N, Neiman HL. Gynecologic imaging: Comparison of transabdominal and transvaginal sonography. Radiology 1988;166:321-324.
  3. Coleman BG, Arger PH, Grumbach K, et al. Transvaginal and transabdominal sonography: Prospective comparison. Radiology 1988;168:639-643.
  4. Tessler FN, Schiller VL, Perrella RR, Sutherlan ML, Grant EG. Transabdominal versus endovaginal pelvic sonography: prospective study. Radiology 1989;170:553-556.
  5. Scanlan KA, Pozniak MA, Fagerholm M, Shapiro S. Value of transperineal sonography in the assessment of vaginal atresia. AJR Am J Roentgenol 1990;154:545-548.
  6. Graham D, Nelson MW. Combined perineal-abdominal sonography in the assessment of vaginal atresia. J Clin Ultrasound 1986;14:735-738.
  7. Jeanty P, d’Alton M, Romero R, Hobbins JC. Perineal scanning. Am J Perinatol 1986;13:289-295.
  8. Lyons EA, Gratton D, Harrington C. Transvaginal sonography of normal pelvic anatomy.  Radiol Clin North Am 1992;30:663-675.
  9. Fleischer AC, McKee MS, Gordon AN, et al. Transvaginal sonography of postmenopausal ovaries with pathologic correlation. J Ultrasound Med 1990;9:637-644.
  10. Wolf SI, Gosink BB, Feldesman MR, et al. Prevalence of simple adnexal cysts in postmenopausal women. Radiology 1991;180:65-71.
  11. International Commission on Radiological Protection. Task Group on Reference Man. Report of the Task Group on Reference Man. Prepared by the Task Group Committee no. 2, International Commission on Radiological Protection, Snyder WS (chairperson). New York:Pergamon Press, 1975.
  12. Sample WF, Lippe BM, Gyepes MT. Gray-scale ultrasonography of the normal female pelvis. Radiology 1977;125:477-483.
  13. Edwards RG. Conception in the Human Female. London;New York:Academic Press, 1980.
  14. Yeh HC, Futterweit W, Thornton JC. Polycystic ovarian disease: US features in 104 patients. Radiology 1987;163:111-116.
  15. Hackeloer B.-J., Nitschke-Dabelstein S. Ovarian imaging by ultrasound: An attempt to define a reference plane. J Clin Ultrasound 1980;8:497-500.
  16. Fleischer AC, Daniell JF, Rodier J, Lindsay AM, James AE Jr. Sonographic monitoring of ovarian follicular development. J Clin Ultrasound 1981;9:275-280.
  17. Bomsel-Helmreich O, Gougeon A, Thebault A, et al. Healthy and atretic human follicles in the preovulatory phase: Differences in evolution of follicular morphology and steroid content of the follicular fluid. J Clin Endocrinol Metab 1979;48:686-694.
  18. Nitschke-Dabelstein S, Hackeloer BJ, Sturm G. Ovulation and corpus luteum formation observed by ultrasonography. Ultrasound Med Biol 1981;7:33-39.
  19. O’Herlihy C, de Crespigny LJ Ch, Robinson HP. Monitoring ovarian follicular development with real-time ultrasound. Br J Obstet Gynaecol 1980;87:613-618.
  20. Renaud R, Macler J, Dervain I. Echographic study of follicular maturation and ovulation during the normal menstrual cycle. Fertil Steril 1980;33:272-276.
  21. Fleischer AC, Kepple DM, Vasquez J. Conventional and color Doppler transvaginal sonography in gynecologic infertility. Radiol Clin North Am 1992;30:693-702.
  22. Hall DA, Hann LE, Ferrucci JT Jr, et al. Sonographic morphology of the normal menstrual cycle. Radiology 1979;133;185-188.
  23. Dillon EH, Taylor KJW: Doppler ultrasound in the female pelvis and first trimester pregnancy. Clin Diagn Ultrasound 1990;26:93-117.
  24. Coleman BG: Transvaginal sonography of adnexal masses. In: Coleman BG, ed. The Radiologic Clinics of North America. Philadelphia, W.B. Saunders, 1992;30:677-691.
  25. Hata K, Hata T, Senoh D, et al. Change in ovarian arterial compliance during the human menstrual cycle assessed by Doppler ultrasound. Br J Obstet Gynaecol 1990;97:163-166.
  26. Scholtes MCW, Wladimiroff JW, van Rijen HJM, Hop WC. Uterine and ovarian flow velocity waveforms in the normal menstrual cycle: A transvaginal Doppler study. Fertil Steril 1989;52:981-985.
  27. Taylor KJW, Burns PN, Wells PNT, Conway DI, Hull MGR. Ultrasound Doppler flow studies of the ovarian and uterine arteries. Br J Obstet Gynaecol 1985;92:240-246.
  28. Kurjak A, Kupesic-Urek S, Schulman H, Zalud I. Transvaginal color flow Doppler in the assessment of ovarian and uterine blood flow in infertile women. Fert Steril 1991;56:870-873.
  29. Zalud I, Kurjak A. The assessment of luteal blood flow in pregnant and non-pregnant women by transvaginal color Doppler. J Perinat Med 1990;118:215-221.
  30. Taylor KJW, Ramos IM, Feyock AL, et al. Ectopic pregnancy:duplex Doppler evaluation. Radiology 1989;173:93-97.
  31. Andolf E, Jorgensen C, Svalenius E, Sunden B. Ultrasound measurement of the ovarian volume. Acta Obstet Gynecol Scand 1987;66:387-389.
  32. Fleischer AC. Transvaginal sonography helps find ovarian cancer. Diagn Imaging 1988;10:124-128.
  33. Arger PH. Transvaginal ultrasonography in postmenopausal patients. In: Coleman BG, ed. The Radiologic Clinics of North America. Philadelphia, W.B. Saunders, 1992;30:759-767.
  34. Schoenfeld A, Levavi H, Hirsch M, Pardo J, Ovadia J. Transvaginal sonography in postmenopausal women. J Clin Ultrasound 1990;18:350-358.
  35. Goswamy RK, Campbell S, Royston JP, et al. Ovarian size in postmenopausal women. J Obstet Gynaecol 1988;95:795-801.
  36. Granberg S, Wikland M. A comparison between ultrasound and gynecologic examination for detection of enlarged ovaries in a group of women at risk for ovarian carcinoma. J Ultrasound Med 1988;7:59-64.
  37. Hall DA, McCarthy KA, Kopans DB. Sonographic visualization of the normal postmenopausal ovary. J Ultrasound Med 1985;5:9-11.
  38. Aboulghar M, Mansour RT, Serour G, Sattar MA, Awad MM, Amin Y. Transvaginal ultrasonic needle-guided aspiration of pelvic inflammatory septic masses before ovulation induction for in vitro fertilization. Fertil Steril 1990;53:311-314.
  39. van Nagell JR Jr, DePriest PD, Puls LE, et al. Ovarian cancer screening in asymptomatic postmenopausal women by transvaginal sonography. Cancer 1991;68:458-462.
  40. Goldstein SR, Subramanyam B, Synder JR, Beller U, Raghavendra N, Beckman EM. The postmenopausal cystic adnexal mass: The potential role of ultrasound in conservative management. Obstet Gynecol 1989;73:8-10.
  41. Fleischer AC. Transabdominal and transvaginal sonography of ovarian masses. Clin Obstet Gynecol 1991;34:433-442.
  42. Rulin MC, Preston AL. Adnexal masses in postmenopausal women. Obstet Gynecol 1987;70:578-581.
  43. Fleischer AC, Mendelson EB, Bohm-Velez M, Entman SS. Transvaginal and transabdominal sonography of the endometrium. Semin Ultrasound CT MR 1988;9:81-101.
  44. Kurjak A, Zalud I. Transvaginal colour flow imaging and ovarian cancer. BMJ 1990;300:330.
  45. Andolf E, Svalenius E, Anstedt B. Ultrasonography for early detection of ovarian carcinoma. Br J Obstet Gynaecol 1986;93:1286-1289.
  46. Andolf E, Jorgensen C. Cystic lesions in elderly women diagnosed by ultrasound. Br J Obstet Gynaecol 1989;96:1076- 1079.
  47. Bhan V, Amso N, Whitehead WJ, Campbell S, Royston P, Collins WP. Characteristics of persistent ovarian masses in asymptomatic women. Br J Obstet Gynaecol 1989;96:1384-1391.
  48. Campbell S, Bhan V, Royston P, Whitehead MI, Collins WP. Transabdominal ultrasound screening for early ovarian cancer. BMJ 1989;299:1363-1367.
  49. Goswamy RK, Campbell S, Whitehead MI. Screening for ovarian cancer. Clin Obstet Gynecol 1983;10:621-643.
  50. Hurwitz A, Yagel S, Zion I, Zakut D, Palti Z, Adoni A. The management of persistent clear pelvic cysts diagnosed by ultrasonography. Obstet Gynaecol 1988;72;320-322.
  51. Bourne TH, Campbell S, Steer C, Whitehead MI, Collins WP. Transvaginal colour flow imaging: A possible new screening technique for ovarian cancer. BMJ 1989;299:1367-1370.
  52. Fleischer AC, Roger WH, Rao BK, et al. Transvaginal color Doppler sonography of ovarian masses with pathologic correlation. Ultrasound Obstet Gynecol 1991;1:275-278.
  53. Kurjak A, Zalud I, Jurkovic D, Alfirevic Z, Miljan M. Transvaginal color Doppler for the assessment of pelvic circulation. Acta Obstet Gynecol Scand 1989;68:131-135.
  54. Silverberg E, Boring CC, Squires TS. Cancer statistics 1990. CA 1990;40:9-26.
  55. Buy J-N, Ghossain MA, Sciot C, et al. Epithelial tumors of the ovary: CT findings and correlation with US. Radiology 1991;178:811-818.
  56. Fleischer AC, James AE, Millis JB, Julian C. Differential diagnosis of pelvic masses by gray scale sonography. AJR Am J Roentgenol 1978;131:469-476.
  57. Luxman D, Bergman A, Sagi J, David MP. The postmenopausal adnexal mass: Correlation between ultrasonic and pathologic findings. Obstet Gynecol 1991;77:726-728.
  58. Kurjak A, Jurkovic D. The value of ultrasound in the initial assessment of gynecological patients. Ultrasound Med Biol 1987;13:401-418.
  59. Meine HB, Farravt P, Guha T. Distinction of benign from malignant ovarian cysts by ultrasound. Br J Obstet Gynaecol 1978;85:893-899.
  60. Requard CK, Mettler FA Jr, Wicks JD. Preoperative sonography of malignant ovarian neoplasms. AJR Am J Roentgenol 1981;137:79-82.
  61. Finkler NJ, Benacerraf B, Lavin PT, Wojciechowski C, Knapp RC. Comparison of CA-125, clinical impression and ultrasound in the preoperative evaluation of ovarian masses. Obstet Gynecol 1988;72:659-664.
  62. Campbell S, Goessens L, Goswamy RK, Whitehead MI. Real-time ultrasonography for the determination of ovarian morphology and volume. A possible early screening test for ovarian cancer. Lancet 1982;1:425-426.
  63. Andolf E, Jorgensen C. A prospective comparison of transabdominal and transvaginal ultrasound with surgical findings in gynecologic disease. J Ultrasound Med 1990;9:71- 75.
  64. Barber HRK, Graber EA. The PMPO syndrome. Obstet Gynecol 1971;38:921-923.
  65. Barber HRK. Ovarian cancer: Diagnosis and management. Am J Obstet Gynecol 1984;150:910-916.
  66. Deland M, Fried A, van Nagell JR Jr, et al. Ultrasonography in the diagnosis of tumors of the ovary. Surg Gynecol Obstet 1979;148:346-348.
  67. Hall DA, McCarthy KA. The significance of the postmenopausal simple adnexal cyst. J Ultrasound Med 1986;5:503-505.
  68. Taylor KJW, Burns PN. Duplex Doppler scanning in the pelvis and abdomen. Ultrasound Med Biol 1985;11:643-658.
  69. Taylor KJW, Morse SS. Doppler detects vascularity of some malignant tumors. Diagn Imaging 1988;10:132-136.
  70. Taylor KJW, Ramos I, Carter D, Morse SS, Snower D, Fortune K. Correlation of Doppler ultrasound tumor signals with neovascular morphologic features. Radiology 1988;166:57-62.
  71. Hata T, Hata K, Senoh D, et al. Doppler ultrasound assessment of tumor vascularity in gynecologic disorders. J Ultrasound Med 1989;8:309-314.
  72. Farquhar CM, Rae T, Thomas DC, Wadsworth J, Beard RW. Doppler ultrasound in the non-pregnant pelvis. J Ultrasound Med 1989;8:451-457.
  73. Folkman J. Tumor angiogenesis. Adv Cancer Res 1985;43:175-203.
  74. Gammill SL, Shipkey FH, Himmelfarb EH, Parvey LS, Rabinowitz JG. Roentgenology-pathology correlation study of neovascularization. AJR Am J Roentgenol;1976,126:376-385.
  75. Jain, RK. Determinants of tumor blood flow: a review. Cancer Res 1988; 48;2641-2658.
  76. Wells PNT, Halliwell M, Skidmore R, Webb AJ, Woodcock JP. Tumor detection by ultrasonic Doppler flow signals. Ultrasonics 1977;15:231-236.
  77. Burns PN, Halliwell M, Wells PNT, Webb AJ. Ultrasonic Doppler studies of the breast. Ultrasound Med Biol 1982;8:127-143.
  78. Kurjak A, Zalud I, Schulman H. Adnexal Masses. In: Kurjak A, ed. Transvaginal color Doppler: a comprehensive guide to transvaginal color Doppler sonography in obstetrics and gynecology. New Jersey:Parthenon Publishing Group, Inc., 1991;103-122.
  79. Kurjak A, Zalud I, Alfirevic Z, Jurkovic D. The assessment of abnormal pelvic blood flow by transvaginal color and pulsed Doppler. Ultrasound Med Biol 1990;16:437-442.
  80. Kurjak A, Jurkovic D, Alfirevic Z, Zalud I. Transvaginal color Doppler imaging. J Clin Ultrasound 1990;18:227-234.
  81. Kurjak A, Zalud I. Tumor Neovascularization. In: Kurjak A, ed. Transvaginal color Doppler: a comprehensive guide to transvaginal color Doppler sonography in obstetrics and gynecology. New Jersey:Parthenon Publishing Group, Inc., 1991;93-102.
  82. Demopoulos RI, Mittal KR. Anatomy, Histology, and Physiology. In: Altchek A, Deligdisch L, eds. The Uterus. Berlin;New York:Springer-Verlag,1991;1-13.
  83. Hricak H. MRI of the female pelvis: A review. AJR Am J Roentgenol 1986;146:1115-1122.
  84. Levi CS, Lyons EA, Lindsay DJ, Ballard G. Normal Anatomy of the Female Pelvis, In: Callen PW, ed. Ultrasonography in Obstetrics and Gynecology, ed 2. Philadelphia:WB Saunders, 1988;375-392.
  85. Fleischer AC. Ultrasound imaging – 2000: Assessment of utero- ovarian blood flow with transvaginal color Doppler sonography; Potential clinical applications in infertility. Fertil Steril 1991;55:684-691.
  86. Dallenbach-Hellweg G. Histopathology of the Endometrium. Berlin;New York:Springer-Verlag, 1981.
  87. Santolaya-Forgas J. Physiology of the menstrual cycle by ultrasonography. J Ultrasound Med 1992;11:139-142.
  88. Hackeloer B.-J.. Ultrasound scanning of the ovarian cycle. J In Vitro Fertil Embryo Trans 1984;1:217-220.
  89. Duffield SE, Picker RH. Ultrasonic evaluation of the uterus in the normal menstrual cycle. Med Ultrasound 1981;5:70-74.
  90. Fleischer AC, Kalemeris GC, Entman SS. Sonographic depiction of the endometrium during normal cycles. Ultrasound in Med Biol 1986;12:271-277.
  91. Fleischer AC, Kalemeris GC, Machin JE, Entman SS, Everett AE Jr. Sonographic depiction of normal and abnormal endometrium with histopathologic correlation. J Ultrasound Med 1986;5:445- 452.
  92. Goswamy RK, Steptoe PC. Doppler ultrasound studies of the uterine artery in spontaneous cycles. Hum Reprod 1988;3:721- 726.
  93. Kurjak A, Breyer B, Jurkovic D, Alfirevic Z, Miljan M. Color flow mapping in obstetrics. J Perinat Med 1987;15:271-281.
  94. Steer CV, Campbell S, Pampiglione JS, Kingsland CR, Mason BA, Collins WP. Transvaginal color flow imaging of the uterine arteries during the ovarian and menstrual cycles. Hum Reprod 1990;5:391-395.
  95. Long MG, Boultbee JE, Hanson ME, Begent RHJ. Doppler time velocity waveform studies of the uterine artery and uterus. Br J Obstet Gynaecol 1989;96:588-593.
  96. de Ziegler D, Bessis R, Frydman R. Vascular resistance of uterine arteries: physiologic effects of estradiol and progesterone. Fertil Steril 1991;55:775-779.
  97. Applebaum M, Cadkin AV. Decidual flow – an early sign of pregnancy. Ultrasound Obstet Gynecol 1992;2:65(abstract).
  98. Cadkin AV, Applebaum M. Ultrasonographic visualization of endometrial vascularity with ectopic pregnancy. Am J Obstet Gynecol 1991;165:236.
  99. Robertson WB. The Endometrium. London;Boston: Butterworth, 1981.
  100. Deligdisch L. Endometrial Response to Hormonal Therapy. In: Altchek A, Deligdisch L, eds. The Uterus. Berlin;New York:Springer-Verlag, 1991;102-114.
  101. Granberg S, Wikland M, Karlsson B, Norstrom A, Friberg L.-G. Endometrial thickness as measured by endovaginal ultrasonogrphy for identifying endometrial abnormality. Am J Obstet Gynecol 1991;164:47-52.
  102. Malpani A, Singer J, Wolverson MK, Merenda G. Endometrial hyperplasia: Value of endometrial thickness in ultrasonographic diagnosis and clinical significance. J Clin Ultrasound 1990;18:173-177.
  103. Varner RE, Sparks JM, Cameron CD, Roberts LL, Soong SJ. Transvaginal sonography of the endometrium in postmenopausal women. Obstet Gynecol 1991;778:195-199.
  104. Osmers R, Volksen M, Schauer A. Vaginosonography for early detection of endometrial carcinoma? Lancet 1990;355:1569-1571.
  105. Fleischer AC, Gordon AN, Entman SS, Kepple DM. Transvaginal sonography (TVS) of the endometrium: Current and potential clinical applications. Crit Rev Diagn Imaging 1990;2:85-110.
  106. Rudelstorfer R, Nanz S, Bernaschek G. Vaginosonography and its diagnostic value in patients with postmenopausal bleeding. Arch Gynecol Obstet 1990;248:37-44.
  107. Lin MC, Gosink BB, Wolf SI, et al. Endometrial thickness after menopause: Effect of hormone replacement. Radiology 1991;180:427-432.
  108. Platt JF, Bree RL, Davidson D. Ultrasound of the normal nongravid uterus: Correlation with gross and histopathology. J Clin Ultrasound 1990;18:15-19.
  109. Miller EI, Thomas RH, Lines P. The atrophic postmenopausal uterus. J Clin Ultrasound 1977;5:261-263.
  110. Zemlyn S. The length of the uterine cervix and its significance. J Clin Ultrasound 1981;9:267-269.
  111. Flickinger L, D’Ablaing G III, Mishell DR Jr. Size and weight determinations of nongravid enlarged uteri. Obstet Gynecol 1986;68:855-858.
  112. Kurjak A, Zalud I: Transvaginal color Doppler in the study of uterine perfusion. In: Mashiach S, Ben-Rafael Z, Laufer N, Schenker JG, eds. Advances in Assisted Reproductive Technologies. New York;Plenum Press, 1990;541-544.
  113. Bourne TH, Hillard TC, Whitehead MI, Crook D, Campbell S. Oestrogens, arterial status and postmenopausal women. Lancet 1990;33:1470-1471.
  114. Bourne TH, Campbell S, Whitehead MI, Royston P, Steer CV, Collins WP. Detection of endometrial cancer in postmenopausal women by transvaginal ultrasonography and colour flow imaging. BMJ 1990;301:369.
  115. Bourne TH, Campbell S, Steer CV, Royston P, Whitehad MI, Collins WP. Detection of endometrial cancer by transvaginal ultrasonography with color flow imaging and blood flow analysis: A preliminary report. Gynecol Oncol 1991;40:253-259.
  116. Fleischer AC, Gordon AN, Entman SS, Kepple DM. Transvaginal scanning of the endometrium. J Clin Ultrasound 1990;18:337- 349.
  117. Chambers CB, Unis JS. Ultrasonographic evidence of uterine malignancy in the postmenopausal uterus. Am J Obstet Gynecol 1986;154:1194-1199.
  118. Cacciatore B, Lehtovirta P, Wahlstrom T, Ylostalo P. Preoperative sonographic evaluation of endometrial cancer. Am J Obstet Gynecol 1989;160:133-137.
  119. Cruickshank DJ, Randall JM, Miller ID: Vaginal endosonography in endometrial cancer. Lancet 1989;1:445-446.
  120. Goldstein SR, Nachtigall M, Snyder JR, Nachtigall L. Endometrial assessment by vaginal ultrasonography before endometrial sampling in patients with postmenopausal bleeding. Am J Obstet Gynecol 1990;163:119-123.
  121. Nasri MN, Coast GJ. Correlation of ultrasound findings and endometrial histopathology in postmenopausal women. Br J Obstet Gynaecol 1989;96:1333-1338.
  122. Kenigsberg D, Hodgen GD. Ovarian physiology and in vitro fertilization. In: Behrman SJ, Kistner RW, Patton GW, eds. Progress in Infertility. Boston;Toronto: Little, Brown and Company, 1988;563-580.
  123. Henriksen T, Abyholm TH, Magnus O. Pregnancies after intrafallopian transfer of embryos. J In Vitro Fertil Embryo Trans 1988;5:296-298.
  124. Israel SL, Mutch JC. Myomectomy. Clin Obstet Gynecol. 1958;1:455-466.
  125. Ingersoll, FM. Fertility following myomectomy. Fertil Steril 1963;14:596-602.
  126. Maheux R, Lemay A, Merat P. Use of intranasal luteinizing hormone-releasing hormone agonist in uterine leiomyomas. Fertil Steril 1987;47:229-233.
  127. Adamson GD. Treatment of uterine fibroids: Current findings with gonadotropin-releasing hormone agonists. Am J Obstet Gynecol 1992;166:746-751.
  128. Matta WHM, Stabile I, Shaw RW, Campbell S. Doppler assessment of uterine blood flow changes in patients with fibroids receiving the gonadotropin-releasing hormone agonist Buserelin. Fertil Steril 1988;49:1083-1085.
  129. Deichert U, Schleif R, van de Sandt M, Juhnke I. Transvaginal hysterosalpingo-contrast sonography (Hy-Co-Sy) compared with conventional tubal diagnostics. Hum Reprod 1989;5:418-424.
  130. Deichert U, Schleif R, van de Sandt M, Daume E. Transvaginal hysterosalpingo-contrast sonography for the assessment of tubal patency with gray scale imaging and additional use of pulsed wave Doppler. Fertil Steril 1992;57:62-67.
  131. Shalan H, Sosic A, Kurjak A. Fallopian tube carcinoma:recent diagnostic approach by color Doppler imaging. Ultrasound Obstet Gynecol 1992;2:297-299.
  132. Goswamy RK, Williams G, Steptoe PC. Decreased uterine perfusion – a cause of infertility. Hum Reprod 1988;3:955-959.
  133. Goswamy RK: Doppler ultrasound in infertility. In: Mashiach S, Ben-Rafael Z, Laufer N, Schenker JG, eds. Advances in Assisted Reproductive Technologies. New York; Plenum Press, 1990;533- 539.
  134. Applebaum M. Ultrasound visualization of endometrial vacularity in normal premenopausal women. (submitted)
  135.  Applebaum M. Ultrasound visualization of endometrial vacularity in IVF patients and outcome. (submitted)
  136. Schiller VL, Grant EG: Doppler ultrasonography of the pelvis. In: Coleman BG, ed. The Radiologic Clinics of North America. Philadelphia, W.B. Saunders, 1992;30:735-742.
  137. Sterzik K, Dallenbach C, Schneider V, Sasse V, Dallenbach- Hellweg, Gisela. In vitro fertilization: the degree of endometrial insufficiency varies with the type of ovarian stimulation. Fertil Steril 1988;50:457-462.
  138. Glissant A, de Mouzon J, Frydman R. Ultrasound study of the endometrium during in vitro fertilization cycles. Fertil Steril 1985;44:786-790.
  139. Welker BG, Gembruch U, Diedrich K, Al-Hasani S, Krebs D. Transvaginal sonography of the endometrium during ovum pickup in stimulated cycles for in vitro fertilization. J Ultrasound Med 1989;8:549-553.
  140. Smith B, Porter R, Ahuja K, Craft I. Ultrasonic assessment of endometrial changes in stimulated cycles in an in vitro fertilization and embryo transfer program. J In Vitro Fertil Embryo Trans 1984;1:233-238.
  141. Fleischer AC, Herbert CM, Sacks GA, Wentz AC, Entman SS, James AE Jr. Sonography of the endometrium during conception and nonconception cycles of in vitro fertilization and embryo transfer. Fertil Steril 1986;46:442-447.
  142. Jansen RPS, Anderson JC. Catheterisation of the fallopian tubes from the vagina. Lancet 1987;2:309-310.
  143. Rabinowitz R, Laufer N, Lewin A, et al: The value of ultrasonographic endometrial measurement in the prediction of pregnancy following in vitro fertilization. Fertil Steril 1986;45:824-828.
  144. Thickman D, Arger P, Turek R, Biasco L, Mintz M, Coleman B. Sonographic assessment of the endometrium in patients undergoing in vitro fertilization. J Ultrasound Med 1986;5:197-210.
  145. Kepic T, Applebaum M, Valle J. Preovulatory follicular size, endometrial appearance, and estradiol levels in both conception and nonconception cycles: a retrospective study. The 40th Annual Clinical Meeting of the American College of Obstetricians and Gynecologists 1992;April:20 (abstract).
  146. Kepic T, Applebaum M, Criscione L, Naemyi-Rad F, Valle JA. Pre-ovulatory follicular size, endometrial appearance and estradiol levels in conception and non-conception cycles: a retrospective study. (submitted)
  147. Ritchie WGM. Sonographic evaluation of normal and induced ovulation. Radiology 1986;161:1-10.
  148. Tarlatzis BC, Laufer N, DeCherney AH. The use of ovarian ultrasonography in monitoring ovulation induction. J In Vitro Fertil Embryo Trans 1984;1:226-232.
  149. Jones HW Jr. In Vitro Fertilization. In: Behrman SJ, Kistner RW, Patton GW, eds. Progress in Infertility. Boston;Toronto: Little, Brown and Company, 1988;543-561.
  150. Nilsson L, Wikland M, Hamberger BJ. Recruitment of an ovulatory follicle in the human following follicle-ectomy and luteectomy. Fertil Steril 1982;137:30-34.
  151. O’Herlihy C, Pepperell RJ, Robinson HP. Ultrasound timing of human chorionic gonadotropin administration in clomiphene- stimulated cycles. Obstet Gynecol 1982;59:40-45.
  152. Geisthovel F, Skubsch U, Zabel G, Schillinger H, Breckwoldt M. Ultrasonographic and hormonal studies in physiologic and insufficient menstrual cycles. Fertil Steril 1983;339:277-283.
  153. McArdle CR, Seibel M, Weinstein F, Hann LE, Nickerson C, Taymor ML. Induction of ovulation monitored by ultrasound. Radiology 1983;148:809-812.
  154. Jones HW Jr, Acosta AA, Garcia JE. A technique for the aspiration of oocytes from human ovarian follicles. Fertil Steril 1982;37:26-29.
  155. Renou P, Trounson AO, Wood C, Leeton JF. The collection of human oocytes for in vitro fertilization: I. An instrument for maximizing oocyte recovery rate. Fertil Steril 1981;35:409- 412.
  156. Wikland M, Hamberger L, Enk L, Nilsson L. Sonographic techniques in human in-vitro fertilization programmes. Hum Reprod 1988;3:65-68.
  157. Salat-Baroux J, Tibi C, Alvarez S, Gomez A, Antoine JM, Cornet D. Ultrasonographic prediction of ovarian hyperstimulation (OHS) after IVF. In: Mashiach S, Ben-Rafael Z, Laufer N, Schenker JG, eds. Advances in Assisted Reproductive Technologies. New York;Plenum Press, 1990;559-565.
  158. Blankstein J, Shalev J, Saadon T, et al. Ovarian hyper- stimulation syndrome: Prediction by number and size of preovulatory ovarian follicles. Fertil Steril 1987;47:597-602.
  159. Fleischer AC, Kepple DM, Vasquez J. Conventional and color Doppler transvaginal sonography in gynecologic infertility. Radiol Clin North Am 1992;30:693-702.
  160. Parsons J, Booker M, Goswamy RK, et al. Oocyte retrieval for in-vitro fertilization by ultrasonically guided needle aspiration via the urethra. Lancet 1985;1:1076-1077.
  161. Steer CV, Campbell S, Tan SL, et al. Transvaginal color Doppler: A new technique for use after in vitro fertilization to identify optimum uterine conditions before embryo transfer. Fertil Steril 1992;57:372-376.
  162. Baber RJ, McSweeney MB, Gill RW, et al: Transvaginal pulsed Doppler ultrasound assessment of blood flow to the corpus luteum in IVF patients following embryo transfer. Br J Obstet Gynaecol 1988;95:1226-1230.
  163. Battaglia C, Larocca E, Lanzani A, Valentini M, Genazzani AR. Doppler ultrasound studies of the uterine arteries in spontaneous and IVF stimulated ovarian cycles. Gynecol Endocrinol 1990;4:245-250.
  164. Kurjak A, Zalud I. Ectopic Pregnancy. In: Kurjak A, ed. Transvaginal color Doppler: a comprehensive guide to transvaginal color Doppler sonography in obstetrics and gynecology. New Jersey:Parthenon Publishing Group, Inc., 1991;83-92.
  165. Kurjak A, Zalud I, Schulman H. Ectopic Pregnancy: Transvaginal color Doppler of trophoblastic flow in questionable adnexa. J Ultrasound Med 1991;10:685-689.
  166. Tekay A, Jouppila P. Color Doppler flow as an indicator of trophoblastic activity in tubal pregnancies detected by transvaginal ultrasound. Obstet Gynecol 1991;80:995-999.
  167. Atri M, Bret PM, Tulandi T. Spontaneous resolution of ectopic pregnancy: Initial appearance and evolution at transvaginal ultrasound. Radiology 1993;186:83-86.
  168. Rottem S, Thaler I, Timor-Tritsch IE. Classification of tubal gestations by transvaginal sonography. Ultrasound Obstet Gynecol 1991;1:197-201.
  169. Alcazar J.L., Castello G., Minguez J.A., Galan M.J. Endometrial blood flow mapping using transvaginal power Doppler sonography in women with postmenopausal bleeding and thickened endometrium. Ultrasound Obstet Gynecol 2003; 21:583-588.
  170. Shushan A., Revel A., Rojansky N. How often are endometrial polyps malignant? Gynecol Obstet Invest; 58(4):212-5; 2004.
  171. Timmerman D., Verguts J., Konstantinovic M.L., Moerman P., Van Schoubroeck D., Deprest J. The pedicle artery sign based on sonography with color Doppler imaging can replace second-stage test in women with abnormal bleeding. Ultrasound Obstet Gynecol 22:166-171, 2003.
  172. Jakab A., Juhasz B., Ovari L., Major T., Birinyi L., Bacsko G. Power Doppler imaging in the diagnosis of endometrial polyps – the feeling vessels. Ultrasound Obstet Gynecol, 12 Abstract Book, p. 14.
  173. Jakab A., Ovari L., Juhasz B., Birinyi L., Bacsko G., Toth Z. Detection of feeding artery improves the ultrasound diagnosis of endometrial polyps in asyntomatic patients. Eur J Obstet Gynecol Reprod Biol, 119 (1):103-107, 2005.
  174. Fleischer AC, Shappell HW, Parker LP, Hanemann CW: “ Color Doppler Sonography of Endometrial Masses”. J of Ultrasound 2002;21,8:861-865
  175. Smith-Bindman R, Kerlikowske K, Feldstein, VA, et al. Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. JAMA 1998; 280:1510–1517
  176. Chan F-Y, Chau M-T, Pun T-C, et al. Limitations of transvaginal sonography and color Doppler imaging in the differentiation of endometrial carcinoma from benign lesions. J Ultrasound Med 1994; 13: 623–628.
  177. Kirschner CV, Alanis-Amezcua JM, Martin VG, et al. Angiogenesis factor in endometrial carcinoma: a new prognostic indicator? Am J Obstet Gynecol 1996; 174:1879–1884.
  178. Perez-Medina T, Bajo J, Huertas MA, Rubio A. Pr
  179. edicting atypia inside endometrial polyps. J Ultrasound Med 2002; 21:125–128.
  180. Clevenger-Hoeft M, Syrop CH, Stovall DW, Van Voorhis BJ. Sonohysterography in premenopausal women with and without abnormal bleeding. Obstet Gynecol 1999; 94: 516–520.
  181. Bakour SH, Khan KS, Gupta JK. The risk of premalignant and malignant pathology in endometrial polyps.  Acta Obstet Gynecol Scand 2000; 79: 310–320..
  182. Parsons AK, Lense JJ. Sonohysterography for endometrial abnormalities: preliminary results. J Clin Ultrasound 1993; 21:87–95.
  183. Cohen JR, Luxman D, Sagi J, Yovel I, Wolman I, David MP. Sonohysterography for distinguishing endometrial thickening from endometrial polyps in postmenopausal bleeding.  Ultrasound Obstet Gynecol 1994; 4: 227–230.
  184. Jansen FW, de Kroon C, Van Dongen H, Grooters C, Louwe L, Trimbos-Kemper T. Diagnostic hysteroscopy and saline infusion sonography: prediction of intrauterine polyps and myomas. J Minim Invasive Gynecol 2006; 13: 320–324.
  185. Exalto N, Stappers C, Van Raamsdonk LAM, Emanuel HM. Gel installation sonohysterography: first experience with a new technique. Fertil Steril 2007; 87: 152–155.
  186. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58–61.
  187. Aleem F, Predanic M, Calame R, Moukhtar M, Pennisi J. Transvaginal color and pulsed Doppler sonography of the endometrium: a possible role in reducing the number of dilatation and curettage procedures.                 J Ultrasound Med         1995;14: 139–145.
  188. Carter J, Saltzman A, Hartenbach E, Fowler J, Carson L, Twiggs LB. Flow characteristics in benign and malignant gynecologic tumors using transvaginal color flow map.  Obstet Gynecol 1994; 83: 125–130.
  189. Perez-Medina T, Bajo J, Huertas MA, Rubio A. Predicting atypia inside endometrial polyps. J Ultrasound Med   2002; 21:125–128.
  190. Sidhu PS,         Allan PL,       Cattin F,        Cosgrove DO,         Davies AH, Do DD, Karakagil S, Langholz J, Legemate DA, Martegani A, Llull JB, Pezzoli C, Spinazzi A. Diagnostic efficacy of SonoVue, a second generation contrast agent, in the assessment of extracranial carotid or peripheral arteries using colour and spectral Doppler ultrasound: a multicentre study.   Br J Radiol 2006; 79: 44–51.
  191. Fleischer AC, Shappell HW. Color Doppler sonohysterography of endometrial polyps and submucosal fibroids.  J Ultrasound Med 2003; 22: 601–604.
  192. Carter J, Saltzman A, Hartenbach E, Fowler J, Carson L, Twiggs LB. Flow characteristics in benign and malignant gynecological tumors using transvaginal color flow Doppler. Obstet Gynecol 1994; 83: 125–130.
  193. Goldstein SR, Monteagudo A, Popiolek D, Mayberry P, Timor-Tritsch I. Evaluation of endometrial polyps. Am J Obstet Gynecol 2002; 186: 669–674.
  194. Ressner M, Brodin LA, Jansson T, Hoff L, Ask P, Janerot-Sjoberg B. Effects of ultrasound contrast agents on Doppler tissue velocity estimation.  J Am Soc Echocardiogr 2006;19:154–164.
  195. Testa AC, Ferrandina G, Fruscella E, Van Holsbeke C, Ferrazzi E, Leone FP, Arduini D, Exacoustos C, Bokor D, Scambia G, Timmerman D. The use of contrasted transvaginal sonography in the diagnosis of gynecological diseases: a preliminary study. J Ultrasound Med 2005; 24: 1267–1278.
  196. Alcazar JL, Merce LT, Garcia Manero M. Three-dimensional power Doppler vascular sampling: a new method for predicting ovarian cancer in vascularized complex adnexal masses. J Ultrasound Med 2005; 24: 689–696.
  197. Merce LT, Alcazar JL, Engels V, Troyano J, Bau S, Bajo JM. Endometrial         volume       and      vascularity        measurements  by transvaginal three-dimensional ultrasonography and power Doppler angiography in stimulated and tumoral endometria: intraobserver reproducibility.   Gynecol Oncol 2006;           100:544–550.
  198. Jakab A, Ovari L, Juhasz B, Birinyi L, Bacsko G, Toth Z. Detection of feeding artery improves the ultrasound diagnosis of endometrial polyps in asymptomatic patients. Eur J Obstet Gynecol Reprod Biol 2005; 119: 103–107.
  199. Timmerman D, Verguts J, Konstantinovic ML, Moerman P, Van Schoubroeck D, Deprest J, Van Huffel S. The pedicle artery sign based on sonography with color Doppler imaging can replace second-stage tests in women with abnormal 3-dimensional sonography and power Doppler angiography for diagnosis of endometrial carcinoma. J Ultrasound Med 2007;26: 1279–1287.
  200. Odeh M, Vainerovsky I, Grinin V, Kais M, Ophir E, Bornstein J.: Three-dimensional endometrial         volume       and      3-dimensional power Doppler analysis in predicting endometrial carcinoma and hyperplasia.   Gynecol Oncol    2007;106:348–353.
  201. Bordes A, Bory AM, Benchaib M, Rudigoz RC, Salle B. Reproducibility of transvaginal three-dimensional endometrial volume measurements with virtual organ computer-aided analysis (VOCAL) during ovarian stimulation.  Ultrasound Obstet Gynecol 2002; 19: 76–80.
  202. Yaman C, Jesacher K, P ¨olz W. Accuracy of three-dimensional transvaginal ultrasound in uterus volume measurements; comparison with two-dimensional ultrasound. Ultrasound Med Biol 2003; 29: 1681–1684.
Eco, PMA

Flussimetria endometriale e outcome gravidico in cicli FIV (original article)

La scansione ecografica si è dimostrata una metodica indispensabile nella valutazione del benessere fetale, dello studio delle patologie ginecologiche e, più recentemente nel monitoraggio follicolare e nella valutazione endometriale per migliorare l’outcome gravidico (PR) nei cicli di procreazione medica assistita (PMA), soprattutto in quei cicli che prevedono il trasferimento selettivo di un solo embrione.  La valutazione funzionale endometriale  può essere effettuata mediante lo studio ecografico del pattern  e del thickness endometriale. Un pattern endometriale a tre linee (a “chicco di caffè”)  e un thickness >7 mm al giorno del picco LH o iniezione di hCG sono stati proposti come marcatori di buona recettività endometriale, ma hanno dato un’alta percentuale di risultati falsi positivi [1].   Invece un buon indice di pulsatilità  (PI) delle arterie uterine e arterie spirali si è rivelato essere un affidabile segno di elevato outcome gravidico. Infatti un’efficiente irrorazione distrettuale comporta una buona maturazione e recettività endometriale [1-6].  L’uso sperimentale di sildenafil (Viagra®) somministrato per via vaginale si è dimostrato utile per migliorare il flusso ematico uterino ed endometriale, il thickness e la recettività endometriale con aumentata percentuale di attecchimento endometriale e pregnancy rate (PI)  [23,4]. 

Materiali e metodi: studio osservazionale non randomizzato. In un totale di 160 pazienti, in cicli FIV/ICSI è stato valutato l’indice di pulsatilità (PI) delle arterie uterine e spirali al 3° giorno, 8° giorno e al giorno della somministrazione di hCG in cicli FIV/ICSI usando una sonda vaginale da 6.5 MHz (AU 4 Idea, Esaote; Milano, Italy) e color doppler  (graf. 1, 2).  Il PI (Pulsatility Index) delle arterie suindicate mira a valutare l’impedenza del letto vascolare ad esse distale mentre il PI delle arterie spirali è espressione diretta dell’irrorazione  endometriale. Le pz. erano messe a letto in posizione supine a riposare per 15′ prima di essere sottoposte all’esame ecografico e la vescica era completamente riempita per minimizzare ogni effetto esterno che potesse modificare estemporaneamente il flusso ematico locale (24-26).  Un filtro da 50 Hz era utilizzato per eliminare i segnali di bassa frequenza originati dai movimenti dei vasi sanguigni. L’energia ultrasonografica massima utilizzata era <80 mW/cm2.  Il segmento dell’a. uterina esaminato era la porzione della branca uterina ascendente in prossimità della cervice e l’esame era effettuato in scansione longitudinale.   Si considerava il valore medio di 3 PI consecutivi per ciascuna delle due arterie uterine. Non si sono osservate differenze significative fra le due arterie uterine (graf. 1).  Le pz. erano quindi suddivise, in base al PI, in due gruppi: gruppo A costituito da 102 donne in cui il PI era normale (<2) e  gruppo B (38 pz.) in cui il PI era più elevato >2. 

Al 3° giorno del ciclo precedente, erano stati valutati  i livelli sierici di FSH e LH, il numero di piccoli follicoli ovarici antrali (diametro ≤10 mm) (tab. 1). In questa tabella è inserito un 3° gruppo (gruppo C) composto da pazienti con caratteristiche di “poor responders”. Queste pazienti erano escluse dallo studio condotto nel successivo ciclo FIV/ICSI.

L’iperstimolazione ovarica controllata (COH) è stata ottenuta mediante l’iniezione di gonadotropine somministrate secondo protocolli personalizzati in pazienti nelle quali le  ovaie al 2° giorno del ciclo si presentavano senza follicoli di diametro >5 mm e con thickness endometriale <5 mm.  I cicli COH sono stati cancellati se all’8° giorno di stimolazione non erano presenti almeno 3 follicoli di diametro >10 mm (“poor responders”) oppure in presenza di >15 follicoli secondari (>10 mm) oppure con livelli sierici di estradiolo  ≥9,000 pmol/L, a rischio di iperstimolazione ovarica severa (OHSS). Anche i dati relativi a queste pazienti non venivano considerati nel presente studio.

Quando almeno due follicoli >17 mm di diametro erano presenti,  10.000 UI di gonadotropina corionica umana (hCG; Profasi; Serono) erano somministrati i.m. e il pick-up ovocitario transvaginale eseguito 35-36 ore dopo l’iniezione di hCG. Gli ovociti recuperati erano classificati come maturi, immaturi e atresici sulla base della morfologia e l’aspetto del complesso cumulo-corona secondo i criteri di Acosta et al. [20]. Iniezione intracitoplasmatica dello spermatozoo è stata eseguita come descritto da Van Steirthegheim et al. [21]. Per studiare l’impatto della qualità dell’embrione al momento dell’impianto, gli embrioni sono stati classificati morfologicamente prima del trasferimento. Gli embrioni sono stati classificati:

  • grado A: blastomeri uguali dimensioni, nessuna frammentazione; 
  • grado B, blastomeri uguali o disuguali per dimensioni, <20% di frammentazione; 
  • grado C, blastomeri di dimensione uguali o disuguali, 20-50% di frammentazione; 
  • grado D, blastomeri uguali o disuguali, >50% di frammentazione.

1-3 embrioni venivano trasferiti, mediante catetere di Wallace, 48-96 ore dopo il pick-up. Gli embrioni rimanenti con <20% frammentazione sono stati criocongelati. Progesterone vaginale (Esolut, Progeffik) è stato prescritto come supporto della fase luteale per 14-20 giorni. Le gravidanze cliniche sono state confermate dall’evidenza ecografica di attività cardiaca embrionale.

Durante il regime di stimolazione ovarica le pazienti sono stati sottoposte a valutazioni ormonali, ecografiche e Doppler. E’ stata anche effettuata una valutazione del NO follicolare e plasmatica . 

Analisi statistica: Independent two-tailed t-test e Chi-square test.

Risultati:

Non vi erano differenze statisticamente significative nei parametri indicati nella tab. 1 come indice di massa corporea, thickness endometriale, livelli sierici di FSH e LH, il numero di ovociti maturi, parametri seminali ed il numero di embrioni di buona qualità nei due gruppi (P> 0.03). L’età media del gruppo A è 31.09 anni e 32.93 anni nel gruppo B, differenza statisticamente significativa (p = 0,04). Il tasso di gravidanza complessiva (PR) è stato 22.91%. Il PR era significativamente più alto in presenza di normale flusso subendometriale-endometriale rispetto al gruppo con ridotta perfusione endometriale espressa da valori elevati di indice di pulsatilità (31.19% vs. 14.63%, p = 0.02). Inoltre, il tasso di gravidanza clinica con “bambino in braccio” e tasso di impianto erano significativamente più alti nel gruppo A rispetto al gruppo B (22.33% e il 13.94% contro il 13,15% e il 6,52%, p = 0.02 e 0.03, rispettivamente) (tab. 3).

Tab. 3 – PI/outcome gravidico
Gruppo A Gruppo B
PR 31.19% 14.63%
“Bambini in braccio” 22.33% 13.15%
% impianto/ET 13.94% 6.52%

CONCLUSIONE: la presenza di normale indice di pulsatilità (PI) endometriale migliora in modo significativo il PR dei cicli FIV/ICSI. L’ossido nitrico (NO) sembra essere direttamente interessato nella modulazione dell’irrorazione ovarica  ed endometriale e conseguente maturazione follicolare ed endometriale. Un suo eccesso come una sua scarsità induce effetti deleteri sulla maturazione ovocitaria e sulla percentuale di impianto embrionale (6-31). Questi dati suggeriscono che la perfusione endometriale costituisce un fattore importante nell’etiopatogenesi dell’infertilità e specialmente nell’infertilità inspiegata (32-33). 

References:

1. Friedler S, Schenker JG, Herman A, Lewin A. The role of ultrasonography in the evaluation of endometrial receptivity following assisted reproductive treatments: A critical review. Hum Reprod Update. 1996;2:323–35. [PubMed]
2. Weckstein LN, Jacobson A, Galen D, Hampton K, Hammel J. Low-dose aspirin for oocyte donation recipients with a thin endometrium: Prospective, randomized study. Fertil Steril. 1997;68:927–30. [PubMed]
3. Hsieh YY, Tsai HD, Chang CC, Lo HY, Chen CL. Low-dose aspirin for infertile women with thin endometrium receiving intrauterine insemination: A prospective, randomized study. J Assist Reprod Genet. 2000;17:174–7. [PMC free article] [PubMed]
4. Sher G, Fisch JD. Effect of vaginal sildenafil on the outcome of in vitro fertilization (IVF) after multiple IVF failures attributed to poor endometrial development. Fertil Steril. 2002;78:1073–6. [PubMed]
5. Mercé LT, Barco MJ, Bau S, Troyano J. Are endometrial parameters by three-dimensional ultrasound and power Doppler angiography related to in vitro fertilization/embryo transfer outcome? Fertil Steril. 2008;89:111–7. [PubMed]
6. Merce LT. Ultrasound markers of implantation. Ultrasound Rev Obstet Gynecol. 2002;2:110–23.
7. Chien LW, Au HK, Chen PL, Xiao J, Tzeng CR. Assessment of uterine receptivity by the endometrial-subendometrial blood flow distribution pattern in women undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2002;78:245–51. [PubMed]
8. Zaidi J, Campbell S, Pittrof R, Tan SL. Endometrial thickness, morphology, vascular penetration and velocimetry in predicting implantation in an in vitro fertilization program. Ultrasound Obstet Gynecol. 1995;6:191–8. [PubMed]
9. Maugey-Laulom B, Commenges-Ducos M, Jullien V, Papaxanthos-Roche A, Scotet V, Commenges D. Endometrial vascularity and ongoing pregnancy after IVF. Eur J Obstet Gynecol Reprod Biol. 2002;104:137–43. [PubMed]
10. Tekay A, Martikainen H, Jouppila P. Blood flow changes in uterine and ovarian vasculature, and predictive value of transvaginal pulsed colour Doppler ultrasonography in an in-vitro fertilization programme. Hum Reprod. 1995;10:688–93. [PubMed]
11. Bassil S, Magritte JP, Roth J, Nisolle M, Donnez J, Gordts S. Uterine vascularity during stimulation and its correlation with implantation in in-vitro fertilization. Hum Reprod. 1995;10:1497–501. [PubMed]
12. Chwalisz K, Garfield RE. Role of nitric oxide in implantation and menstruation. Hum Reprod. 2000;15(Suppl 3):96–111. [PubMed]
13. Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. Relationship between uterine blood flow and endometrial and subendometrial blood flows during stimulated and natural cycles. Fertil Steril. 2006;85:721–7. [PubMed]
14. Applebaum M. The uterine biophysical profile. Ultrasound Obstet Gynecol. 1995;5:67–8. [PubMed]
15. Schild RL, Holthaus S, d’Alquen J, Fimmers R, Dorn C, van Der Ven H, et al. Quantitative assessment of subendometrial blood flow by three-dimensional-ultrasound is an important predictive factor of implantation in an in-vitro fertilization programme. Hum Reprod. 2000;15:89–94. [PubMed]
16. Wang L, Qiao J, Li R, Zhen X, Liu Z. Role of endometrial blood flow assessment with color Doppler energy in predicting pregnancy outcome of IVF-ET cycles. Reprod Biol Endocrinol. 2010;8:122. [PMC free article] [PubMed]
17. Vimercati A, Loverro G, Greco P, Depalo R, Mei L, Selvaggi L. Endometrial color and power-Doppler sonographic evaluation for prediction of pregnancy after in-vitro fertilization and embryo transfer. Fertil Steril. 2001;76:S21–2.
18. Singh N, Bahadur A, Mittal S, Malhotra N, Bhatt A. Predictive value of endometrial thickness, pattern and sub-endometrial blood flows on the day of hCG by 2D doppler in in-vitro fertilization cycles: A prospective clinical study from a tertiary care unit. J Hum Reprod Sci. 2011;4:29–33. [PMC free article] [PubMed]
19. Yuval Y, Lipitz S, Dor J, Achiron R. The relationships between endometrial thickness, and blood flow and pregnancy rates in in-vitro fertilization. Hum Reprod. 1999;14:1067–71. [PubMed]
20. de Ziegler D, Frydman R. Different implantation rates after transfers of cryopreserved embryos originating from donated oocytes or from regular in vitro fertilization. Fertil Steril. 1990;54:682–8. [PubMed]
21. Dechaud H, Bessueille E, Bousquet PJ, Reyftmann L, Hamamah S, Hedon B. Optimal timing of ultrasonographic and Doppler evaluation of uterine receptivity to implantation. Reprod Biomed Online. 2008;16:368–75. [PubMed]
22. Contart P, Baruffi RL, Coelho J, Mauri AL, Petersen C, Franco JG., Júnior Power Doppler endometrial evaluation as a method for the prognosis of embryo implantation in an ICSI program. J Assist Reprod Genet. 2000;17:329–34. [PMC free article] [PubMed]
23. Baruffi RL, Contart P, Mauri AL, Peterson C, Felipe V, Franco JG. A uterine ultrasonographic scoring system as a method for the prognosis of embryo implantation in an ICSI program. Fertil Steril. 2001;76:S189. [PMC free article] [PubMed]
24. Aghahoseini M, Tuba K, Marsousi V, Aleyasin A. Assessment of endometrial-subendometrial blood flow detected by color Doppler sonography and uterine receptivity in infertile women. Acta Med Iran. 2008;46:461–6.
25. Wu HM, Chiang CH, Huang HY, Chao AS, Wang HS, Soong YK. Detection of the subendometrial vascularization flow index by three-dimensional ultrasound may be useful for predicting the pregnancy rate for patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2003;79:507–11. [PubMed]
26. Nygren KG, Sullivan E, Zegers-Hochschild F, Mansour R, Ishihara O, Adamson GD, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) world report: Assisted reproductive technology 2003. (e1-17).Fertil Steril. 2011;95:2209–22. 2222. [PubMed]
27. Steer CV, Tan SL, Dillon D, Mason BA, Campbell S. Vaginal color Doppler assessment of uterine artery impedance correlates with immunohistochemical markers of endometrial receptivity required for the implantation of an embryo. Fertil Steril. 1995;63:101–8. [PubMed]
28. Check JH, Dietterich C, Lurie D, Choe JK, Nazari A. The relationship of color and power Doppler ultrasound parameters of pulsatility and resistance indices and sub-endometrial blood flow with endometrial thickness on day prior to progesterone administration and their relationship to clinical pregnancy rate following frozen embryo transfer. Fertil Steril. 2003;80:S123.
29. Zácková T, Järvelä IY, Tapanainen JS, Feyereisl J. Assessment of endometrial and ovarian characteristics using three dimensional power Doppler ultrasound to predict response in frozen embryo transfer cycles. Reprod Biol Endocrinol. 2009;7:151. [PMC free article] [PubMed]
30. Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. The role of endometrial and subendometrial blood flows measured by three-dimensional power Doppler ultrasound in the prediction of pregnancy during IVF treatment. Hum Reprod. 2006;21:164–70. [PubMed]
31. Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. Endometrial and subendometrial vascularity is higher in pregnant patients with livebirth following ART than in those who suffer a miscarriage. Hum Reprod. 2007;22:1134–41. [PubMed]
32. Battaglia C, Larocca E, Lanzani A et al: “Doppler ultrasound studies of the uterine arteries in spontaneous and IVF stimulated ovarian cycles”. Gynecol. Endocrinol 1990;4:245   
33. Selda Uysal et al: Endometrial spiral artery Doppler parameters in unexplained infertility patients: is endometrial perfusion an important factor in the etiopathogenesis? J Turk Ger Gynecol Assoc. 2012; 13(3): 169–171.
Eco, PMA

Pattern e thickness endometriale in cicli indotti: outcome gravidico in cicli COH

Introduzione:

All’esame ecografico, in fase follicolare,  la cavità endometriale presenta in scansione longitudinale un tipico aspetto «a goccia» con apice in basso, in corrispondenza della cervice.  Nelle scansioni trasversali, invece, l’endometrio assume un aspetto a doppia ellissoide fuse a “T” in modo da presentare tre apici rivolti rispettivamente verso la cervice e  i corni uterini (2).

In letteratura finora sono stati descritti 4 tipi di IUS (intrauterine signal) osservati durante un normale ciclo spontaneo fisiologico (2,3,4).  

IUS tipo I°: mucosa fine e lineare, ipoecogena (fase proliferativa iniziale); essa cresce progressivamente fino a raggiungere lo spessore di 6-7 mm al 13°-14° giorno.

IUS tipo II°: mucosa spessa, ipoecogena, senza reazione edematosa periferica (fase proliferativa avanzata); Imaging a tre linee, però la differenza di ecogenicità fra le tre linee che circondano l’endometrio e l’endometrio stesso non è così fortemente accentuata come per il seguente tipo III° e le due linee esterne sono un pò frastagliate.

IUS III° tipo

IUS tipo IV°: sotto l’azione del progesterone l’endometrio raggiunge il suo massimo spessore (12-18 mm); l’aumento dello spessore è dovuto in gran parte all’accumulo di secreto nelle ghiandole endometriali.  All’eco mediano si sostituisce un tappeto uniformemente iperecogeno che erode gradualmente l’immagine a tre linee del IIIº tipo e produce la tipica configurazione a «racchetta». Tale immagine iperecogena può essere circondata da un’ampia zona ipoanecogena (ciò che ha indotto in errore molti AA. che hanno classificato il IV° tipo come ipoecogeno), che nelle sezioni trasversali configura la classica immagine a occhio di bue «bull’s eye» della fase luteale (4).  Inoltre, a livello endocavitario, può essere presente un alone anecogeno determinato dalle secrezioni endometriali, dalla dilatazione ghiandolare e dalla presenza di glicogeno (1).

Tale classificazione è stata successivamente trasferita nella descrizione del pattern endometriale dei cicli PMA. In un nostro studio presentato nel 1985 al Congresso SIFES di Firenze, abbiamo presentato una nostra originale classificazione riferita ai cicli di COH (Controlled Ovarian Hyperstimulation) per PMA. In essa abbiamo aggiunto due ulteriori tipi di pattern endometriale frequentemente osservati nei cicli COH: Nelle nostre osservazioni USG di IUS in cicli PMA ci siamo imbattuti in immagini che non rientravano in nessuno dei quadri classicamente descritti e che quindi hanno richiesto una classificazione più ampia aggiungendo altri due tipi di IUS: il V° e il VI°. 

IUS tipo V°: Il tipo V° rappresenta un endometrio iperecogeno, luteale, simile al tipo IV°   ma

IUS V° tipo

è amorfo senza la tipica rappresentazione ad “occhio di bue” del IV° tipo; è riscontrato, in fase luteale, solitamente in sostituzione del IV° tipo,   nelle pazienti del 3° gruppo (anovulatorio) e nelle pazienti «poor responders» in cicli di stimolazione ovarica controllata (COH).

IUS tipo VI°, “lacunare”: appare come un’immagine iperecogenica “a goccia” con l’apice rivolto in basso e rappresenta un endometrico marcatamente iperplastico, iperluteinizzato. Detto anche IUS «lacunare» per un ampio alone ipoecogeno centrale riferibile alle abbondanti secrezioni endometriali periovulatorie conseguenti allo stato di iperestrogenismo. Esso compare nel 1° gruppo (ovulatorio) e nel 2° gruppo (gravidico) e mai nel 3° gruppo (anovulatorio). Si presenta nell’immediato periodo post-ovulatorio e spesso sostituisce il IV° tipo di IUS luteale. E’ caratteristico dei cicli di iperstimolazione ovarica da gonadotropine esogene nelle pazienti «high responders»Si ritrova nei casi di iperstimolazione ovarica severa (OHSS) che spesso insorge nelle pazienti PCOS sottoposte a COH. 

 Materiali e metodo:

Sono state sottoposte ad indagine ecografica randomizzata 560 pazienti affette da sterilità primaria da cause varie (tab. 1) e inserite in protocolli di stimolazione ovarica controllata (COH) per tecniche di procreazione medica assistita (PMA) (tab 2).

Le pazienti presentavano un’età media di 29,5 anni con un minimo di 23 ed un massimo di 42 anni.

Tab. 1 INDICAZIONI PER LA COH:
1.         Patologia tubarica 68%
2.         Endometriosi 18%
3.         Difetti della crescita follicolare 15-20%
4.         Difetti della fase luteinica 20-40%
5.         Sterilità idiopatica 30-47%
6.         Fattore maschile: dispermia e/o presenza di anticorpi antisperma (ASA) 45%
7.         Sterilizzazione tubarica 3.46%

  

tab. 2 – tecniche PMA
1. rapporti mirati
2. inseminazione artificiale
3. FIVET
 4. ICSI

 Le scansioni USG sono state effettuate da 2 operatori utilizzando ecografi multidisciplinari Ansaldo Au 450 e Toshiba entrambi dotati di un trasduttore endovaginale da 6.5 MHz e di sonda convex da 3.5 MHz per le scansioni addominali. Il monitoraggio ecografico è stato effettuato dal 5º al 28° giorno del ciclo. Lo spessore ed il tipo dello IUS è stato valutato misurando la distanza fra l’interfaccia endometrio-miometrio anteriore e posteriore in scansione uterina longitudinale, ricercando il punto di maggiore ampiezza. Nelle pazienti non sottoposte a stimolazione ovarica la cavità uterina è uno spazio virtuale  mentre nei cicli PMA lo spazio intracavitario non è più virtuale, ma presenta un’ampiezza talvolta notevole e rientra nella valutazione quantitativa e qualitativa dello IUS (14).

 Risultati:

Tutte le pazienti, in base ai risultati ottenuti, sono state suddivise in 3 gruppi principali:

1º gruppo: 264 pazienti (47,14%) che hanno presentato ovulazione ma non gravidanze;

2º gruppo: 146 pazienti (26,08%) che hanno ovulato e sono rimaste gravide;

3° gruppo: 150 pazienti (26,78%) che non hanno ovulato ed ovviamente .non sono rimaste gravide.

Per ognuno di  tali gruppi sono stati valutati il tipo (graf.1,2,3)  e lo spessore dello IUS (graf. 4,5,6).

Nel 1° gruppo  lo IUS si presenta del tipo I-II dal 3° all’8° giorno con evoluzione al tipo II-III° nell’8-10º giorno e al tipo III (trilineare)  nel 10-14° giorno e quindi al tipo IV° dal  14 al 20° giorno. Si assiste sempre alla comparsa dello IUS di tipo V dal 21º al 26° giorno.  Nel 1° gruppo, e ancor di più nel 2° gruppo, è presente IUS di tipo VI° «lacunare» nei casi di iperstimolazione ovarica (OHSS) fino a poterne essere considerato fattore predittivo.

Nel 2° gruppo si assiste ad un’evoluzione del tipo di IUS con graduale trasformazione dello IUS dal tipo lineare (tipo 1) a quello proliferativo (II-III) fino a quello pre-ovulatorio (III° tipo) a tre linee ben marcate (“a chicco di caffè” o “ring sign”) e con thickness che evolve gradualmente da 1-2 mm fino a 9-12 mm in fase pre-ovulatoria. Inoltre nel 2° gruppo (gravidico)  non si assiste alla trasformazione in tipo V (desquamativo); il tipo IV° («bull’s eye») persiste per tutto il periodo luteale anche se talvolta può essere presente il tipo VI° in caso di iperstimolazione severa (OHSS).

Nel 3° gruppo, anovulatorio, si nota un’onda corta di trasformazione; nel senso che difficilmente in esso sono presenti  più di tre tipi di IUS. Infatti in questo gruppo è caratteristica la persistenza del tipo I anche nella fase follicolare avanzata (11-15° giorno) e la scarsa presenza del tipo IV (grafico 1), mentre compare precocemente il tipo V ad indicare la mancata maturazione endometriale.

 

Nel grafico 2 son rappresentate le variazioni del thickness dello IUS rispettivamente nei cicli ovulatori, con gravidanze e anovulatori. Ad una osservazione comparativa risalta immediatamente una differenza nella curva di accrescimento dello spessore dell’endometrio che nel 1° gruppo,  cicli ovulatori non gravidici,  cresce gradualmente per innalzarsi a picco dal 13º al 17º giorno da un valore di 10 mm a 21 mm; lo spessore dello IUS discende quindi fino a 13 mm nella fase luteale, mantenendosi pressocchè costante fino ai giorni immediatamente precedenti il flusso mestruale. Nei cicli con gravidanza, invece,  l’aumento dello spessore endometriale è più graduale e continuo da una media di 6,7 mm del  3° giorno a 10 mm del 13° giorno; raggiunge un picco di 19 mm al 16º giorno  e si mantiene a livelli lievemente inferiori ma costanti  per tutto il periodo luteale. Lo spessore dello IUS dei cicli anovulatori parte da un livello medio nettamente inferiore rispetto a quello dei cicli ovulatori e gravidici (5,8 mm vs. 9,8 e 6,7 mm rispettivamente), ha una stentata crescita nel periodo follicolare raggiungendo al 16° giorno un plateau di appena 13 mm che resta immutato fino al 21° giorno; dal 21° giorno inizia un  bizzarro ed inaspettato picco di crescita  che raggiunge i 21 mm al 25º giorno quando inizia una brusca diminuzione fino al termine del ciclo.

Discussione:

Il diametro medio dello IUS nei cicli con gravidanza è superiore a  quello dei cicli ovulatori senza gravidanza e molto di più rispetto ai cicli anovulatori (11,89 mm vs. 11,26 vs. 7,60 mm rispettivamente). Nel gruppo con gravidanza mancano quelle brusche variazioni di valori evidenti nel gruppo dei cicli ovulatori semplici e soprattutto nel gruppo anovulatorio. In quest’ultimo non deve sorprendere il picco tardo luteale, evidente nel grafico n. 2, attribuibile all’attività steroidogenetica dei piccoli follicoli giunti a tardiva, e comunque incompleta, maturazione nella tarda fase luteale. Questo atteggiamento è tipico delle ovaie policistosiche.

Conclusioni:

La  valutazione USG del tipo  e dello spessore dello IUS nei programmi PMA é un utilissimo mezzo di indagine, non costoso, di facile interpretazione per un ecografista esperto da inserire come elemento di valutazione insieme al numero e al diametro follicolare nel monitoraggio dei programmi PMA.

Lo spessore e le variazioni maturative dell’endometrio, valutati al giorno della somministrazione di HCG, sono positivamente correlati con i livelli di estradiolo e del numero di ovociti con diametro >15 mm. Il trattamento con clomifene altera queste valutazioni.

Le migliori percentuali di PR sono correlate alla presenza di IUS del 3° tipo e del diametro di 9-12 mm al giorno della somministrazione di HCG.

Inoltre, la valutazione del thickness endometriale  è l’unico elemento che consente di adeguare in tempo reale la posologia della supplementazione farmacologica dopo l’ovulazione. Il PR può incrementare, e le gravidanze biochimiche evitate,   se la supplementazione con HCG è effettuata quando il thickness endometriale è ≥9 mm ed ≤14 mm in periodo peri-ovulatorio. 

 

Bibliografia

  1. Volpicelli V., Volpicelli T, Dale B: “IUS in cicli indotti: fattore predittivo per outcome gravidico”. Giornale SIFES;1998;5,2:53-56
  2. Rashidi BH, Sadeghi M, Jafarabadi M, Tehrani Nejad ES.: Relationships between pregnancy rates following in vitro fertilization or intracytoplasmic sperm injection and endometrial thickness and pattern. Eur J Obstet Gynecol Reprod Biol. 2005 Jun 1; 120(2):179-84. 
  3. Heger A, Sator M, Pietrowski D.:  Endometrial Receptivity and its Predictive Value for IVF/ICSI-Outcome. Geburtshilfe Frauenheilkd. 2012 Aug; 72(8):710-715. 
  4. Mercé LT, Barco MJ, Bau S, Troyano J.:  Are endometrial parameters by three-dimensional ultrasound and power Doppler angiography related to in vitro fertilization/embryo transfer outcome? Fertil Steril. 2008 Jan; 89(1):111-7. Epub 2007 Jun 6.
  5. R.P. DickeyT.T. OlarD.N. CuroleS.N. Taylor and P.H. Rye: Endometrial pattern and thickness associated with pregnancy outcome after assisted reproduction technologies. Human Reproduction Volume 7, Issue 3 Pp. 418-421.
  6. Hershko-Klement A, Tepper R. Ultrasound in assisted reproduction: a call to fill the endometrial gap. Fertil Steril. 2016 Jun; 105(6):1394-1402.e4. Epub 2016 Apr 29.
  7. Jing ZhaoQiong Zhang and Yanping Li: The effect of endometrial thickness and pattern measured by ultrasonography on pregnancy outcomes during IVF-ET cycles. Reproductive Biology and Endocrinology 2012 10:100
  8. Barker MA, Boehnlein LM, Kovacs P, Lindheim SR: Follicular and luteal phase endometrial thickness and echogenic pattern and pregnancy outcome in oocyte donation cycles. J Assist Reprod Genet. 2009, 26: 243-249. 10.1007/s10815-009-9312-z.
  9. McWilliams GD, Frattarelli JL: Changes in measured endometrial thickness predict in vitro fertilization success. Fertil Steril. 2007, 88: 74-81. 10.1016/j.fertnstert.2006.11.089.
  10. Amir W, Micha B, Ariel H, Liat LG, Jehoshua D, Adrian S: Predicting factors for endometrial thickness during treatment with assisted reproductive technology. Fertil Steril. 2007, 87: 799-804. 10.1016/j.fertnstert.2006.11.002.
  11. Richter KS, Bugge KR, Bromer JG, Levy MJ: Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst-stage embryos. Fertil Steril. 2007, 87: 53-59. 10.1016/j.fertnstert.2006.05.064.
  12. Zhang XQ, Chen CH, Confino E, Barnes R, Milad M, Kazer RR: Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2005, 83: 336-340. 10.1016/j.fertnstert.2004.09.020.
  13. Kovacs P, Matyas S, Boda K, Kaali SG: The effect of endometrial thickness on IVF/ICSI outcome. Hum Reprod. 2003, 18: 2337-2341. 10.1093/humrep/deg461
  14. Basir, G.S., O, W.S., So, W.W., Ng, E.H., and Ho, P.C. Evaluation of cycle-to-cycle variation of endometrial responsiveness using transvaginal sonography in women undergoing assisted reproduction. Ultrasound Obstet. Gynecol. 2002; 19: 4844–4889
  15. Chen SL, Wu FR, Luo C, Chen X, Shi XY, Zheng HY, Ni YP.  Combined analysis of endometrial thickness and pattern in predicting outcome of in vitro fertilization and embryo transfer: a retrospective cohort study. Reprod Biol Endocrinol. 2010 Mar 24; 8:30. Epub 2010 Mar 24.
  16. Al-Ghamdi, A., Coskun, S., Al-Hassan, S., AL-Rejjal, R., and Awartani, K. The correlation between endometrial thickness and outcome of in vitro fertilization and embryo transfer (IVF-ET) outcome. Reprod. Biol. Endocrinol. 2008; 6: 37
  17. Catizone F.A., Ianniruberto A.: Ecografia Transvaginale Testo Atlante,Edizioni C.I.C. Roma ottobre 1992.

  18. DUffiel S., Picker R-: Ultrasonic evaluation of the uterus in the normal menstrual cycle. Med.  Ultrasaund, 5, 70-75, 1981.
  19. Fleischer A.C., Kalemeris G., Entman S-: Sonographic depiction of the endometrium during normal cycles. I. Ultrasound Med.  Biol. 12,271-276, 1986.
  20. Johanisson E. Parker RR.  A., Landgren B.M. DiciPalusy E.: morphometric analysis of the human endometrium in relation of peripherai hormone levels. Pertil.  Steril. 38, 564-568, 1982.
  21. Slangen T., van Herendael B.J., Verheugen C.:  The assessment of the endometrium by intravaginal ultrasound in stimulated cycles in IVF. VI World Congress In Vitro Fertilization and Alternative Assisted Reproduction, April 2-7, 1989, ierusalem,Israel, Abstracta; @.67.
  22. Prietl G., Welker B.,GembruchU., et al.: endosonography of the endometrium with respect to IVF outcome.  VI World Congress In Vitro and Assisted Reproduction, April 2-7, 1989, ierusalem,Israel, Alstracts, p. 108.
  23. Isacov D. Boldes R. Thaler I., et al.: Transvaginal ultrasonographic assessment of the endometrium and the prediction of implantation after embryo transfer in IVF patients. VI World Congress In Vitro Fertilization and Alternative Assisted Reproduction, April 2-7, 1989, Ierusalem, Isarel, Abstracts, p. 133.
  24. Gonen Y. Casper R.F.: Endometrial thickness and growth during ovarian stimulation: A possibie predictor of implantation in vitro fertilization. 45th Annual Meeting of The American Fertility Society, November 13-16, 1989,San Francisco.  Abstracts S141.
  25. Gonen Y. Casoer R.F.: prediction of impiantation by the sonographic appearance of the endometrium durin controlled ovarian stimulation for in – vitro fertilization.  J.    in vitro Fert Embryo transf 7 (3): 146-152 1990.
  26. Forrest T.S. ELYDERANI M.K. MUILEMBERG M.I.: Cyclic endometrial change:USassesment with histologic correlation. Radiology 167: 233 1988.
  27. LI T.C. DOKERY P., ROGERS A.W. COOKE I.D.: A quantitative study of endometrial  development in the luteal phase: comparison between women with unexplained infertility and normal fertility. Br. J. Obstet.  Gynaecol. 97; 576-82, 1990.
  28. Callen P.W., De Martini W.J., Filly R.A.: The central uterine cavity echo: a useful anatomic signe in the ultrasonographic evaluation of the femal pelvis. Radiology 131, 187, 1979.
  29. Sakamoto C., Makano H.: The ecogenic endometrium and alteration during menstrual cycle- Int.  J. Gynecol.  Obstetr. 20, 255, 1982.
  30. Ohno Y, Fujimoto Y.: Endometrial oestrogen and progesterone receptors and their relationship to sonographic appearance of the endometrium.  Hum Reprod Update. 1998 Sep-Oct; 4(5):560-4. 
Andrologia, PMA

Inseminazione artificiale

 Per inseminazione artificiale si intende la deposizione dello sperma nelle vie genitali femminili al di fuori del rapporto sessuale. E’ la più vecchia e la più semplice delle tecniche PMA.   Nel 1799 fu descritta da John Hunter la prima gravidanza ottenuta a Londra con inseminazione artificiale con sperma del partner maschile affetto da ipospadia. Nuovo impulso, ebbe la inseminazione artificiale in seguito a due scoperte: la descrizione delle fasi del ciclo della donna e del periodo fecondo pubblicati da Ogino e Knauss nel 1932, e la possibilità di congelare lo sperma, realizzata nel 1945 dal biologo Jean Rostand. Così, nel 1953, Bunge ottiene la nascita di un bimbo perfettamente normale in seguito ad Inseminazione Artificiale Omologa (AIH)  con liquido seminale scongelato (1-7).

 Le inseminazioni terapeutiche possono essere eseguite impiegando lo sperma del partner, inseminazione omologa (AIH), o lo sperma di donatore (AID).

L’inseminazione artificiale può essere eseguita mediante deposizione dello sperma in vagina, in prossimità della cervice, nella cervice (ICI), nell’utero (IUI), nelle tube (Fallopian Perfusion, FP), nella cavità addominale (IPI). Sono disponibili speciali strumenti di inseminazione come il catetere da inseminazione con mandrino metallico da 16 Gx 18 cm (Casmed, UK), le coppette cervicali della Prodimed, le coppette a pressione negativa della Wisap, le Rigidinjector da 2.1 mm della RI.MOS (Mirandola–MO-), Makler Insemination Device  della SEFI Medical Instruments LTD (8-11).

DATI LEGISLATIVI - Il ministro della Salute Beatrice Lorenzin ha firmato le nuove linee guida della legge sulla fecondazione assistita che sono stati pubblicati sulla Gazzetta Ufficiale  (n.65 del 18 marzo 2017 Supp. Ordinario n. 15) e resi operativiFra le novità l’accesso all’inseminazione eterologa.  Il nuovo testo, che aggiorna le linee guida del 2008, ed annulla quasi completamente la legge 40/2004, è stato rivisto in rapporto all’evoluzione tecnico-scientifica ma anche normativa. In particolare ai decreti legislativi 191/2007 e 16/2010 e all’accordo Stato Regioni del 15 marzo 2012 (che applica alla Pma le normative europee su qualità e sicurezza di cellule umane), e alle sentenze della Corte costituzionale n.151/2009, e n.162/2014 che hanno eliminato, rispettivamente, il numero massimo di tre embrioni da creare e trasferire in un unico e contemporaneo intervento, e il divieto di fecondazione eterologa (12,13).

 *******************************************************************************************************************

INDICAZIONI

La IA veniva classicamente eseguita per i casi di sterilità inspiegata nei quali una o ambedue le tube sono pervie ed i parametri seminali appaiono pressocchè normali e per impotentia coeundivaginismo, ipospadia. In seguito nuove indicazioni si sono aggiunte: ostilità cervicale, patologia immunologica maschile e femminile, oligoastenospermia (tab. 1)  (13-16).

tab. 1 – Indicazioni per IHA ed efficacia  
patologie efficacia
sterilità idiopatica +++
impotentia coeundi +++++++
eiaculazione retrograda +++++++
ipospadia +++++
vaginismo +++++++
oligospemia da diluizione +++++
patologia immunitaria seminale +++++
patologia immunitaria cervicale +++++
muco cervicale denso +++++
ipospermia ++++
sterilità inspiegata +++
oligoastenospermia ++
endometriosi ++

FATTORI MASCHILI:

Ipospermia: Per ipospermia si intende la condizione in cui analisi ripetute del seme rivelano un volume seminale <1,5 ml. nei casi di ipospermia grave, ossia in presenza di un volume seminale <1 ml, l’infertilità può essere dovuta all’incapacità di questa quantità minima di liquido seminale di venire a contatto con l’orifizio cervicale e le sue secrezioni. In questi casi una AIH con protezione può migliorare la capacità fecondante del campione seminale. Si possono utilizzare le coppette cervicali disponibili in commercio o si può eseguire una AIH intra-pericervicale o IUI (17,18).

Oligospermia: Nel casi di oligospermia semplice (spz <20 milioni/ml), la procedura da seguire consiste nel concentrare il maggior numero di spermatozoi disponibili a livello dell’orifizio cervicale esterno evitando, per quanto possibile il contatto diretto con le secrezioni vaginali e la perdita dalla vagina. Molti AA riportano percentuali di PR molto bassi (10.5%/ciclo). Il cutt-off per la IUI è ≥2.000.000 spz mobili totali (19).

Astenospermia: La motilità progressiva è un fattore fondamentale ai fini della capacità fecondante degli spermatozoi. Una motilità ridotta (spz con motilità rettilinea <50%) è stata più spessa associata ad infertilità che non una concentrazione spermatica ridotta o una percentuale elevata di cellule spermatiche morfologicamente anormali. L’astenospermia è quella condizione in cui <50% delle cellule spermatozoiche è dotato di mobilità progressiva. L’inseminazione artificiale con seme astenospermico non sembra offrire alcun vantaggio particolare rispetto al processo di inseminazione naturale. Tuttavia, se il seme viene trattato con successo in vitro con l’ausilio meccanici o medici, può essere usato per l’inseminazione (20).

Teratospermia: spz  con alterazioni morfologiche >70%.

Impotenza: Nei casi di impotenza inorganica (paraplegia, neuropatia diabetica) nei quali il trattamento eziologico si sia dimostrato inefficace, l’AIH rappresenta il trattamento di scelta. L’aneiaculazione può dipendere da una varietà di cause (endocrine, anatomiche, psicogene).

Eiaculazione retrograda: L’eiaculazione retrograda spesso erroneamente descritta come aneiaculazione, condizione caratterizzata dall’emissione retrograda del seme nella vescica anzichè anterograda attraverso l’uretra. La diagnosi di eiaculazione retrograda viene stabilita osservando le cellule spermatiche nelle urine dopo il coito. In questi p/ti si può ottenere la fertilità ripristinando l’eiaculazione anterograda mediante farmaci alfa-1-simpaticomimetici (Provigil cpr 1.000 mg) [1] o tentando di recuperare sperma vitale e fertile dall’urina vescicale dopo il rapporto sessuale o la masturbazione con successiva inseminazione artificiale. Per evitare possibili danni alle cellule spermatiche dovuti al contatto con le urine, l’acidità dell’urina viene neutralizzata somministrando farmaci alcalinizzanti [2] prima del rapporto. Quando si ottiene l’urina, la stessa viene lavata con soluzioni nutrienti (soluzione di Eagle, soluzione di Ringer ecc.) e centrifugata per eliminare la componente liquida (21-27).


[1] farmaci  α-1-simpatico-mimetici, che potenziano cioè l’effetto noradrenergico sulle cellule effettrici post-sinaptiche specialmente delle cellule muscolari lisce. Nome commerciale: Provigil cpr 100 mg: 1-2 cpr mattino e mezzodì

———————————————————————————————————————————–

INDICAZIONI FEMMINILI PER AIH

VaginismoL’AIH intravaginale è molto efficace in questi casi. Tuttavia, noi riteniamo che una terapia che promuova la fertilità in coppie con problemi sessuali come il vaginismo debba essere rimandata fino a qunado non sia stato fornito un adeguato trattamento psico-sessuale.

Fattore cervicale: è opinione comune che un’alterata funzionalità cervicale possa impedire la progressione degli spermatozoi causando infertilità. In tal caso il by-pass cervicale fornito dall’inseminazione transcervicale può risolvere il problema.

Fattori immunologici: la tecnica dell’inseminazione frazionata è la tecnica AIH/AID di prima scelta per l’inseminazione artificiale in caso di immunopatologie ma è riservata alle varianti IUI/FP/IPI. Utilizzando la prima frazione di eiaculato dopo aver sottoposti a lavaggio e swim-up si sono ottenuti risultati piuttosto soddisfacenti  con percentuali di pregnancy rate (PR) del 12-15% (Tab. 2) sovrapponibili alle tecniche FIVET/ICSI ma con costi e distress decisamente inferiori (28-30).

Tab. 2 –  IUI/PR  in caso di Ac anti-sperma
Autori (anno) No. di pazienti PR
Balmaceda (1984) 20 10%
Glezerman (1984) 25 13%
Kerin (1984) 39 8%
Sher (1984) 51 19%
Volpicelli (1985) 28 13%
Ombelet (1997) 14 21,1%
Carroll e Palmer (2001) 94 14%
Cantineau  (2007) 75 21%

Endometriosi – nelle pazienti endometriosiche infertili il trattamento con IA trova buone indicazioni ma l‘outcome gravidico è significativamente più elevato con la tecnica FIVET/ICSI rispetto a COH-IUI, soprattutto nella patologia al IV° stadio e nelle donne >38 anni di età. Considerando gli effetti negativi della stimolazione ovarica prolungata sull’endometriosi, la FIVET/ICSI dovrebbe essere l’approccio di prima scelta nella gestione dell’infertilità in questa malattia. Se si sceglie la tecnica COH-IUI, non si dovrebbero superare i 3-4 cicli di trattamento (31-35).

RACCOLTA E VALUTAZIONE DEL SEME

Il seme è raccolto per masturbazione dopo un periodo di astinenza 3-5 giorni giorni. Rispettare il periodo di astinenza sessuale permette di paragonare i dati seminali a valori standard di normalità. Inoltre, un’astinenza troppo prolungata provoca accumulo di spermatozoi con possibile riduzione della motilità e alterazione della morfologia, mentre un’astinenza troppo breve può causare la riduzione del volume dell’eiaculato e del numero degli spermatozoi.  (36).  

Il miglior modo per raccogliere il campione è mediante masturbazione in una stanza dedicata presso il laboratorio dove si esegue l’esame. Se il liquido seminale viene raccolto a casa il campione deve essere mantenuto ad una temperatura di 20-30° avvolgendo il contenitore in un indumento di lana  e portarlo velocemente in laboratorio (entro 1 ora).

Nella raccolta del seme mediante coito interrotto si può verificare la perdita della prima frazione dell’eiaculato, che di solito contiene la più alta concentrazione di spermatozoi   e può comportare una contaminazione del liquido seminale con secrezioni vaginali che possono interferire sulla motilità degli spermatozoi. 

Speciali preservativi per la raccolta vengono forniti da laboratori specializzati; si sconsiglia l’utilizzo di preservativi comuni perchè contengono agenti che interferiscono con la motilità degli spermatozoi. 

La raccolta mediante aspirazione dalla vagina dopo il rapporto impone una particolare organizzazione logistica e il campione risulta fortemente inquinato.   

In caso di oligoastenospermia severa, la raccolta del seme richiede specifiche tecniche chirurgiche. Ma il costo e il distress di tali metodiche prevede necessariamente il ricorso alle tecniche di fecondazione in vitro. 

La coppia è stata precedentemente esaminata per la valutazione delle condizioni generali di salute e soprattutto per escludere malattie infettive sessualmente trasmesse, epatite  Bepatite Cepatite EHIVvirus Zika

Il liquido seminale viene esaminato e classificato secondo le indicazioni del World Health Organization del 1999 (37,38). 

 PROTOCOLLI DI STIMOLAZIONE: la stimolazione ovarica controllata (COH) migliora il pregnancy rate nei cicli AI. I protocolli sono simili a quelli utilizzati per la fecondazione in vitro. Gli inconvenienti collegati alla COH includono i rischi di iperstimolazione ovarica (OHSS) e gravidanze gemellari e  multiple, oltre all’elevato costo e distress (39-47). 

  1. Cicli spontanei: nelle coppie nelle quali non siano presenti problemi di ovulazione o patologie spermatiche, i risultati della IA sono simili a quelli dei cicli con stimolazione ovarica   (39-41)
  2. r-FSH a bassi dosaggi (late low-dose FSH): 75 UI / giorno dal 7° giorno del ciclo fino a quando il follicolo principale ha raggiunto un diametro >17 mm. La durata media del trattamento è di 6,4 ± 2,5 giorni.5.000 UI HCG vengono somministrate quando il follicolo maggiore è ≥18 mm; l’inseminazione sarà effettuata 32-36 ore dopo la somministrazione di HCG.  Nell’8% dei casi si assiste allo sviluppo di follicoli multipli; PR per ciclo: 13%. Non è necessario il monitoraggio dell’estradiolo. Supplementazione con progesterone vaginale/orale 200-400 mg/die per 20 giorni  (42-49).
  3. Clomifene citrato:  La somministrazione di CC induce aumentata secrezione e rilascio delle gonadotropine dall’ipofisi mediante aumentata secrezione del Gn-RH ipotalamico.  Ciò porta ad un aumentata e prolungata secrezione di FSH ipofisario, che a sua volta stimola la crescita follicolare.  Il clomifene legandosi ai recettori estrogenici presenti nell’ipotalamo e nell’ipofisi interferisce con il normale meccanismo di feedback  negativo esercitato dall’estradiolo su ipotalamo e ipofisi mimando una situazione di ipoestrogenismo che induce l’ipotalamo ad incrementare la secrezione di Gn-RH.                 Il dosaggio medio è di 50-100 mg/die  dal 1-6° giorno del ciclo per 5-7 giorni; la somministrazione nei primi giorni del ciclo offrire migliore outcome gravidico. Le dosi vanno incrementate fino a 250 mg/die in caso di poor responders (in questo caso, ma non solo,  si possono aggiungere HMG 150 UI/die dal 7° al 9° giorno) e in donne obese e diminuite in caso di high responders e nelle donne PCOS.

L’ovulazione è prevista dopo 5-10 giorni dall’assunzione dell’ultima pillola.   Il follicolo stimolato con CC ha bisogno di raggiungere una massa critica maggiore e quindi un diametro follicolare maggiore rispetto all’ovulazione in ciclo spontaneo (23.8-31.1 mm versus 15.1-18.5 mm) per produrre abbastanza estradiolo per bloccare la secrezione di FSH e ottenere il surge di LH indispensabile per la maturazione finale dell’ovocita ed ovulazione.

Anche il thickness endometriale massimo  nel ciclo clomifene è superiore al thickness del ciclo spontaneo: 11.1± 2.02 vs. 10.6±1.08 mm.

Nel 25% dei casi si assiste allo sviluppo di follicoli multipli. PR per ciclo: 4% fino a raggiungere il 12-15% complessivi medi dopo 6 trattamenti.  La sua somministrazione ripetuta del CC induce un effetto cumulativo con un aumento di circa il 50% al mese dei livelli basali. In tal modo, nonostante l’uso di un dosaggio invariato, il CC è più efficace nell’indurre l’ovulazione durante il secondo e/o terzo ciclo di somministrazione (70-80%). La discrepanza fra percentuali di ovulazione e PR è da attribuire al clima antiestrogenico indotto dal CC soprattutto a livello cervicale ed endometriale. La somministrazione di CC con dosaggio massimo va limitato a 3 cicli ovulatori ed in ogni caso non vanno superati i 6 cicli di trattamento per il rischio di sopravvenuta resistenza al clomifene. 

Non è necessario, ma utile, il dosaggio dell’estradiolo.

5.000 UI HCG vengono somministrate quando il follicolo maggiore è ≥18 mm; l’inseminazione sarà effettuata 32-36 ore dopo la somministrazione di HCG. 

Supplementazione con progesterone vaginale/orale 200-400 mg/die per 20 giorni (50-54). Supplementazione con estrogeni (Progynova cpr 2-4 mg/die) dal 7° giorno del ciclo per 20 giorni per limitare gli effetti negativi antiestrogenici del CC sul muco cervicale e sull’endometrio (50-54). La contemporanea somministrazione di metformina e acido chirofolico per lungo periodo prima, durante e dopo i cicli di stimolazione con  clomifene aumentano l’outcome ovulatorio specialmente nelle pazienti PCOS (55-57).

4. HMG + HCG;  r-FSH + HCG; r-FSH + HCG + Gn-RH-a protocollo lungo; r-FSH + HCG + Gn-RH-a protocollo corto L’uso di gonadotropine si è dimostrato un trattamento efficace per l’induzione dell’ovulazione, ma richiede competenze e comporta elevati costi, monitoraggio continuo e un alto rischio di ovulazione multipla, gravidanze multiple, e sindrome da iperstimolazione ovarica (ovarian hyperstimulation syndrome, OHSS). Però il risultato in termine di gravidanza, in 6 cicli di trattamenti, è doppio rispetto ai cicli trattati con clomifene (26% vs. 13%)     (58-64). Supplementazione con progesterone vaginale/orale 200-400 mg/die per 20 giorni. 

5. Inibitori dell’aromatasi: inibitori dell’aromatasi. Nel 2000, Mitwally e Casper sono stati i primi a proporre l’uso di inibitori dell’aromatasi come agenti per indurre l’ovulazione trattando le pazienti con 2.5 mg di letrozolo dal 3° al 7° giorno del ciclo (65-69). Gli inibitori reversibili di IIIa generazione dell’aromatasi attualmente sono ritenuti farmaci efficaci e di prima scelta per l’induzione dell’ovulazione in paz. con anovularietà normogonadotropa, di tipo II WHO, come le pazienti PCOS MAP negative per le quali il clomifene citrato è inefficace (70-76). 

Il trattamento con inibitori di aromatasi (IA) di terza generazione come il letrozolo  (Femara® cpr 2.5 mg) o  l’anastrazolo (Arimidex® cpr 1 mg), produce una riduzione della concentrazione plasmatica di estrogeni conseguente alla ridotta aromatizzazione degli androgeni in estrogeni a livello della granulosa.  Viene a mancare il feedback negativo estrogenico sulla secrezione gonadotropinica ipotalamo-ipofisaria con iperattivazione della stessa come per il clomifene; ma, considerata la breve emivita degli IA, questi, a differenza del clomifene, non provocano l’intensa deplezione dei recettori estrogenici  che si osserva  tipicamente nella terapia con clomifene. Inoltre, è stato ipotizzato che la soppressione delle concentrazioni degli estrogeni in circolo e nei tessuti periferici può risultare in una up-regulation dei recettori endometriali degli estrogeni, portando ad una rapida crescita endometriale una volta che viene ripristinata la secrezione degli estrogeni; lo spessore dell’endometrio quindi aumenta in corso di terapia con IA nonostante i bassi valori di estradiolo circolante.  Gli IA inoltre, aumentano i livelli sierici di LH, androstenedione e di testosterone. L’aumento intraovarico acuto dei livelli di androgeni agisce sulla crescita follicolare, aumentando la sensibilità follicolare all’FSH mediante l’amplificazione genica di FSH e/o la stimolazione del fattore di crescita 1 insulino-simile (IGF-1), che agisce in sinergia con l’FSH. Si viene a mimare un microambiente endocrino molto simile alle donne PCOS che notoriamente sono iperresponsive alla stimolazione ovarica. r-FSH 75 UI/die dal 6° al 9° giorno del ciclo aumentano le percentuali di ovulazione, ovociti di grado III-IV° tipo, PR  (77-84).

CONSULENZA E SOSTEGNO ALLA COPPIA -  L’infertilità non è soltanto un problema fisico ma ha numerosi risvolti psicosociali e sessuali (85-90). Molte coppie sottoposte ad ART  percepiscono l’infertilità come una “condizione stigmatizzante” (91). In queste coppie spesso sono presenti disturbi dell’umore, nervosismo, depressione, facile affaticabilità, insonnia, cefalea, nausea principalmente causati dal sommarsi di un irrazionale concetto della fertilità che viene abnormemente collegata ai concetti di femminilità per la donna e di virilità per il maschio  e dalla pressione esercitata sulla coppia (e specialmente sulla donna) dai parenti (92-97).  Non rari appaiono i disturbi sessuali come dispareunia,  problemi di erezione nel maschio e vaginismo nella donna (98-114).   La consulenza psicologica è un’attività di grande beneficio che ogni centro PMA dovrà prevedere  per le coppie interessate e in tutte le fasi  del trattamento PMA fornendo gli elementi utili a maturare una accettazione consapevole della tecnica proposta senza nascondere le gravi difficoltà, i costi delle tecniche in termini economici e di stress e le basse percentuali di esito finale positivo.  Il tutto ovviamente corredato da sufficiente illustrazione cartacea. Questo tipo di consulenza dovrà essere disponibile prima di intraprendere ogni tipo di trattamento o di decisione.  La consulenza deve aiutare i soggetti a moderare le loro aspettative e ad accettare tutte le difficoltà collegate  alla propria infertilità o a quella del partner. L’offerta dell’attività di consulenza ad una coppia va sempre registrata nella cartella clinica sia che la coppia accetti l’attività di consulenza sia che la rifiuti (115-124).

Per ultimo, ma non meno importante è il problema etico che investe le coppie di cattolici osservanti. Il rapporto sessuale è considerato dalla Chiesa cattolica come un atto riservato solo alle coppie sposate; È considerata come una rappresentazione fisica dell’unità spirituale del matrimonio tra un marito e una moglie. Quindi l’IA fra coppie non sposate è, secondo la Chiesa, da considerarsi semplicemente immorale; nelle coppie sposate la IA è considerata ugualmente immorale  (Convenzione dei medici cattolici, Castelgandolfo, 1949). Secondo il Catechismo della Chiesa Cattolica, l’inseminazione artificiale “dissocia l’atto sessuale dall’atto procreativo”. L’inseminazione artificiale e le pratiche di IVF non è più un atto da due persone che si danno l’un l’altro, ma è un atto che affida la vita (e l’identità dell’embrione al potere dei medici e dei biologi e stabilisce il dominio della tecnologia sull’origine e sul destino della persona umana. Tale rapporto di dominio è di per sé contrario alla dignità e alla parità che deve essere comune ai genitori e ai bambini. Recenti documenti come  Donum vitae ed Evangelium vitae modificano in parte l’atteggiamento contrario della Chiesa che accetta la procreazione assistita a tre condizioni:

a) deve svolgersi all’interno di una coppia legata da un vincolo stabile, che generalmente è quello matrimoniale;
b) deve essere effettuata con un comune rapporto sessuale, e non evitando il rapporto coniugale;
c) non deve comportare interventi invasivi o rischi rilevanti a danno dell’embrione o del feto (questi tre criteri sono proposti nel Donum Vitae, documento della Congregazione per la Dottrina della Fede sul rispetto della vita nascente e la dignità della procreazione (1987).

Attualmente queste tre condizioni si verificano solo nella inseminazione artificiale tra marito e moglie, conseguente a un rapporto sessuale. Ogni altro intervento che prevede una terza persona, o un danno all’embrione o al feto o che non preveda l’atto sessuale è per la Chiesa inaccettabile  (125-127).

Vantaggi della AI:

  1. seleziona la parte migliore degli spz
  2. elimina il liquido seminale ed i  suoi eventuali componenti patologici
  3. short distance: diminuisce il percorso che lo spz deve percorrere per raggiungere l’ovocita
  4. la IUI, la FP e la IPI permettono di evitare l’ambiente ostile vaginale (pH 3.5) e l’eventuale ostilità cervicale

Controindicazioni all’inseminazione artificiale omologa

le controindicazioni assolute o relative alla AIH sono le seguenti:

  1. trattamento citostatico o immunosoppressivo recente (fino ad 1 anno prima del tentativo di AIH);
  2. radioterapia di uno dei due partner  (fino a 4 mesi prima del tentativo di AIH);
  3. infezione genitale acuta di uno dei partners.
  4. Endometriosi grado III-IV°
  5. motivi di ordine religioso o psicologico;
  6. uno dei partners è portatore di una grave malattia ereditaria;
  7. nei casi di malattie sistemiche gravi di uno dei partners (come sifilide, forme gravi di diabete mellito, ecc.);

Monitoraggio follicolare,  Timing  per l’inseminazione, 1-2 inseminazioni

La stimolazione, come già detto, viene generalmente eseguita o con il clomifene (50-150 mg dal 3° al 7° giorno) o con gonadotropine  (75-150 UI/die dal 3° giorno)   o con CC (3°-7° giorno) + FSH 37,5-75 UI dall’8° giorno.

Dal 9° – 10° giorno si inizia il monitoraggio ecografico e/o ormonale dell’ovulazione fino a quando si arriverà ad avere 2-3 follicoli di >18 mm di diametro. A questo punto si somministrano 5.000-10.000 UI di HCG per indurre l’ovulazione che avverrà dopo 36-48 ore. In caso di ciclo spontaneo l’ovulazione è prevista dopo 32-36 dal picco dell’LH.

Perciò dopo 32-36 ore dalla somministrazione di HCG o 24 ore dal picco LH si può procedere alla inseminazione singola o, in caso di 2 inseminazioni, dopo 14 e 36 ore (128,129).

Se eseguita nel momento esatto dell’ovulazione,  un’unica inseminazione per ciclo di trattamento può essere sufficiente e presenta risultati non significativamente differenti rispetto ai cicli con 2-3 inseminazioni (14.9% vs. 11.4%) perché la vitalità dell’ovocita non supera le 24 ore mentre lo spermatozoo è vitale per circa 48-72 ore e fino a 205 ore (128,129). A favore delle inseminazioni multiple giocano però alcuni fattori:

  • Il timing di inseminazione non è suffragato da certezza di dati
  • Il Gold Standard per la stimolazione ovulatoria è ancora da definire. Quando possibile, personalmente preferiamo il protocollo lungo con gonadotropine di sintesi che ci ha dato i migliori risultati complessivi in termini di gravidanza con “bambino in braccio”.
  •  La convinzione attualmente condivisa da moltissimi operatori che il timing ottimale per la IUI è 32-36 ore dopo HCG  o 24 ore dopo il picco LH in caso di ciclo spontaneo non è supportata da nessun dato clinico certo.
  • In caso di stimolazione con gonadotropine si può avere un prematuro picco di LH nel 24% dei casi (in tal caso è utile, in queste pazienti,  praticare una desensibilizzazione ipofisaria con GnRH-a (long-protocol, short-protocol o ultra short-protocol)  in caso di ripetuti fallimenti (120-132).

 Nei cicli stimolati buone percentuali di fertilizzazione si ottengono fino a 48 ore dal surge LH  e 72 ore dall’HCG day per la presenza di ovulazioni “secondarie” da attribuire all’asincronia follicolare quasi sempre presente in questi casi. Questo dato giustificherebbe la scelta di effettuare due o più inseminazioni per ciclo se non fosse che siamo fuori tempo, l’endometrio non presenta più proprietà recettive ottimali, “implantation window closed”, e i risultati in termini di PR non migliorano significativamente (13,41% vs. 15,77%) con 2 inseminazioni per ciclo. In conclusione l’inseminazione unica è la regola da seguire; la doppia inseminazione è giustificata solo in caso di dispermia  (133-141).

Pregnancy rate (PR): I risultati complessivamente della IA sono inferiori a quelli delle tecniche FIV/ICSI ma la tecnica IA è molto meno invasiva e meno costosa. La percentuale di successo dell’inseminazione artificiale varia ampiamente in rapporto alle relative indicazioni, e il raggiungimento della gravidanza non sempre è facilmente attribuibile alla procedura di AIH. Generalmente, il confronto dei dati risulta difficile in quanto l’infertilità multifattoriale viene frequentemente trattata con AI, spesso sono presenti indicazioni non chiare e non sempre i dati vengono riportati in modo completo (142-145). 

 Le percentuali complessive di PR/ciclo di IA sono in media del 13% con un modesto aumento per le IUI rispetto alle ICI. Considerando 6 cicli di terapia, i migliori risultati (30-40%) si ottengono ricorrendo alla tecnica IUI nei casi di ostilità cervicale mentre per i casi di sterilità inspiegata i valori di PR oscillano fra 20% e 30%. I valori più bassi si osservano in caso di dispermia. In rapporto al numero dei cicli di inseminazione rivela che quasi il 53% delle donne che concepiranno, lo farà entro i primi 3 cicli di trattamento, e quasi l’80% entro i primi 6 cicli. Una buona possibilità di riuscita del trattamento dovrebbe quindi basarsi su almeno 6 cicli ovulatori (142-145).

Tab. 3 –   Pregnancy rate in rapporto a patologie e tecnica di inseminazione
patologia pregnancy rate IUI pregnancy rate ICI pregnancy rate FP pregnancy rate IPI
ostilità cervicale 30-40%  0-7%  15-22%  13-19%
 sterilità inspiegata   20-30%  15-23%  13-22%  11-21%
 dispermia  11-15%  0-7%  9-13%  11-14%

Nei casi di patologia seminale, i fattori prognostici da considerare sono la concentrazione e la morfologia degli spermatozoi, ma il fattore prognostico  più importante è  la motilità rettilinea degli spermatozoi dopo trattamento (146-148). Fattori negativi sono i dimorfismi spermatozoari e la bassa concentrazione/ml di spz.. L’inseminazione artificiale nei casi di oligospermia grave (spz <103/ml), di astenospermia (motilità <50%) o di teratospermia (spz immobili <50%) raramente è stata contrassegnata da una percentuale di gravidanze che andasse oltre le aspettative. Tuttavia, migliorando la qualità del seme prima dell’inseminazione, le possibilità di successo del trattamento sono considerevolmente superiori (149-152).

Importante si è rivelata anche la concentrazione di piombo nel liquido seminale. Infatti alti livelli di Pb nel plasma seminale  si correlano con reazioni acrosomiali spontanee che riducono la frazione spermatozoaria in grado di sviluppare la reazione acrosomiale al momento della fecondazione; inoltre elevate concentrazioni di Pb mel liquido seminale riducono la motilità spermatica (153-159).

 Ricerche pubblicate in MEDLINE, EMBASE e Cochrane Library evidenziano numerosi altri fattori importanti per l’outcome gravidico  come l’età della paziente, il numero di follicoli antrali, il numero e il diametro dei follicoli pre-ovulatori, la concentrazione dell’E2, il thickness endometriale e l’impedenza delle arterie spirali al giorno della somministrazione dell’HCG.  Il PR/ciclo è 8.4% per il ciclo monofollicolare (follicolo pre-ovulatorio con diametro di 16-21 mm) e 15% in caso di crescita multifollicolare.  Le percentuali di gravidanza decrescono con follicoli di diametro <14 mm. Per quanto riguarda il numero ottimale di follicoli pre-ovulatori da ottenere, sembra ragionevole un compromesso fra necessità di un risultato positivo e le possibili conseguenze negative dell’iperstimolazione ovarica  (OHSS, GM) limitandosi a non superare la soglia di 4 follicoli >18 mm nel  giorno HCG. I cicli con >4 follicoli >18 mm o >5 follicoli >16 mm dovrebbero essere cancellati (160-168).

La maturazione adeguata dell’endometrio ecograficamente valutabile con la misurazione del diametro massimo del thickness, l’osservazione qualitativa endometriale (Intrauterine signal, IUS) e la valutazione dell’impedenza delle arterie radiali forniscono adeguati parametri di outcome gravidico. In uno studio pubblicato nel 1998 e condotto su 560 pazienti infertili sottoposte a stimolazione ovarica controllata e inseminazione artificiale, è stata valutata la correlazione fra il thickness, la morfologia endometriale e l’outcome gravidico (171-180).  

Il diametro medio del thickness endometriale: nei cicli con gravidanza è superiore a  quello dei cicli ovulatori senza gravidanza e molto di più rispetto ai cicli anovulatori (11,89 mm vs. 11,26 vs. 7,60 mm rispettivamente). Nel gruppo 1, con gravidanza, mancano quelle brusche variazioni di valori evidenti nel gruppo dei cicli ovulatori semplici (gruppo 2) e soprattutto nel gruppo anovulatorio (172-200).

IUS: nei cicli gravidici  lo IUS si presenta del tipo I°-II° (lineare) dal 3° all’8° giorno del ciclo con evoluzione al tipo II-III° nell’8-10º giorno e al tipo III (trilineare)  nel 10-14° giorno e quindi al tipo IV° (luteinico, “bull’s eye”) dal  14° al 20° giorno. Non si assiste mai alla trasformazione dello IUS tipo IV° (luteinico) in tipo V° (desquamativo) mentre può essere presente  IUS di tipo VI° «lacunare» nei casi di iperstimolazione ovarica  severa (OHSS).

Flussimetria arterie uterine e radiali e outcome gravidico in cicli di inseminazione artificiale: La resistenza delle arterie uterine viene valutata come PI (pulsatility index) ed RI (resistance index), dei valori che esprimono il rapporto tra flusso sistolico e flusso diastolico. Cioè valori di PI ed RI più alti esprimono maggiori resistenze, e questo si traduce in una forma dell’onda flussimetrica più “aguzza”.  Le inseminazioni artificiali come FIVET/ICSI che esitano in gravidanza, presentano un valore di PI più basso in fase follicolare. Tale dato però non è confermato da altri AA. che non hanno riscontrato differenze nel PI delle arterie uterine, misurato il giorno della IA o dell’ET, tra cicli andati a buon fine o meno (201-204).  Le pazienti con abortività ricorrente presentano valori dii PI delle arterie uterine in fase medioluteale significativamente più alti rispetto ai controlli (2.42 +/- 0.79 vs 2.08 +/- 0.47) e, nei casi più gravi, presenza di notch protodiastolici). Questo risulta vero soprattutto nei casi di abortività ricorrente da causa sconosciuta, nelle forme da anticorpi antifosfolipidi e nelle anomalie morfologiche dell’utero, ma non nei casi di trombofilia congenita, né nelle patologie tiroidee. Altri autori evidenziano resistenze uterine aumentate al 21° giorno del ciclo nei casi di infertilità da varie cause, rispetto ai controlli fertili (202-207).

Flussimetria vascolare perifollicolare (perifollicular blood flow): sebbene la flussimetria vascolare perifollicolare al giorno della somministrazione di HCG si sia dimostrata un buon marker della qualità ovocitaria e outcome gravidico nei cicli IVF/ICSI (valori di PI e IR significativamente più bassi e grado di vascolarità peri-intrafollicolare >75% nei gruppi con gravidanza rispetto ai gruppi con fallimento di gravidanza), attualmente sembrano insufficienti i dati sul valore predittivo del flusso perifollicolare in termini di outcome gravidico durante la stimolazione ovarica controllata (COH) e cicli di inseminazione artificiale (208-220). 

La somministrazione di aspirina a basse dosi (100 mg/die) e omega 3 sembra migliorare il dato flussimetrico e l’outcome gravidico. Dagli omega 3 derivano le resolvine D1 e D2 che esercitano un’azione antinfiammatoria inibendo la trasmigrazione dei neutrofili e stimolando la fagocitosi dei macrofagi. L’aspirina esercita un’azione antitrombotica inibendo l’aggregazione piastrinica e permettendo la sintesi delle conversine D3 ad azione prolungata. La combinazione di aspirina e omega 3 in simbiosi aumenta l’azione antinfiammatoria, la microcircolazione e la perfusione tissutale anche nelle persone insensibili all’aspirina (221-270).

Non sembra esserci correlazione fra i livelli sierici di E2 al giorno dell’HCG e PRla concentrazione plasmatica di E2 in cicli ovulatori al giorno della somministrazione di HCG  è 170-250 pg/ml   in cicli monofollicolari con incremento di 75-100 pg/ml per ogni ulteriore follicolo maturato. La IA dovrebbe essere effettuata con E2 >250 pg/ml in cicli monofollicolari e E2 750-1200 pg/ml in cicli multifollicolari.  I cicli con E2 >2500  pg/ml al giorno dell’iniezione di HCG dovrebbero essere cancellati (271-276).

I livelli di progesterone invece dovrebbero essere di 1,00-1,50 ng/ml al momento di effettuare l’inseminazione. Tali concentrazioni di P in genere si verificano 12 ore dopo il picco di LH o 24-36 ore dopo somministrazione di HCG.  Elevati valori di progesterone (>2,00 ng/ml) al giorno dell’inseminazione sono correlati a basso grading ovocitario e outcome gravidico negativo, tranne, forse, che nelle pazienti high responders  (271-290).

Altri parametri ormonali con outcome gravidico negativo:

Età della donna: la fertilità nella donna declina gradualmente con l’età fino ai 30 anni. Successivamente il declino è rapido sia in termini di numero che di qualità degli ovociti. Le donne over 38, Advanced maternal age “AMA”, presentano un maggior rischio di ovociti con anomalie cromosomiche (es. inversione del cromosoma 9)  che sono direttamente responsabili dell’aumentata incidenza di aborti spontanei e malformazioni fetali (291-294) e della scarsa risposta alla stimolazione ovarica (295-297).  Inoltre nelle donne >38 aumenta l’incidenza di iperplasia endometrialepolipi endometriali e fibromi uterini (298-305).

 Se non si ottengono gravidanze dopo 6 cicli consecutivi di IA, la coppia deve essere riesaminata ed eventualmente invitata a prendere in considerazione tecniche di fecondazione in vitro; ma anche questa valutazione è stata oggetto di discussione da parte di altri AA (306-309).


EFFETTI NEGATIVI DELL’IA:

  1. Problemi psicologici e sessuali: l’inseminazione non è una procedura innocua e pertanto i possibili effetti negativi devono essere soppesati attentamente come il rischio di una meccanizzazione del rapporto sessuale. La coppia può non percepire il processo di AI come pura procedura medica, ma piuttosto come una misura correttiva dell’incapacità di prestazione. Ne consegue la possibilità che riaffiori l’antica concezione della connessione fra sessualità e procreazione e conseguenti sentimenti di colpa. Non è raro osservare cicli precedentemente ovulatori trasformarsi in anovulatori non appena viene iniziato il trattamento di AI e, in uno dei partners si può verificare una riduzione della risposta sessuale di diverso grado. Per l’uomo che deve produrre un’eiaculazione a richiesta in un preciso momento la prestazione coercitiva è più evidente e presenta gli svantaggi psicologici più immediati dell’AI. La situazione di stress continuo che ne deriva per la coppia e gli insuccessi accumulati mese dopo mese esercitano un’influenza emotiva negativa sul matrimonio in generale e sul rapporto sessuale in particolare (115-124). 
  2. Infezioni: lo sperma non è mai sterile. I principali agenti infettivi contenuti nello sperma sono: Neisserie, Chlamydia, Treponema, Haemophilus Ducrey, Strptococchi gruppo B, Mycoplasma hominis, Ureoplasma urealyticum, Gardnerella vaginalis, Shigella, Salmonella, HIV , Herpes simplex, HBV, HCV, Cytomegalovirus, HPV, Candida albicans. L’agente patogeno di più frequente riscontro è il Cytomegalovirus, seguono l’Uroplasma, il Micoplasma e l’HPV; meno frequenti virus epatite B e HCV, tricomonas vaginalis.  L’infezione, oltre a trasmettere la malattia alla paziente e al feto, fa aumentare i cosiddetti “radicali liberi dell’ossigeno” che riducono ulteriormente la motilità e la capacità fecondante dello sperma.        E’ perciò imperativo attenersi a norme igieniche severissime, attenta disinfezione di vagina e portio. Infine utile aggiungere 60.000 UI di penicillina G; essa oltre a possedere azione antibatterica ha anche un’efficace azione stimolante la motilità spermatica (310-317).   L’inseminazione artificiale dà l’opportunità ai pazienti affetti da HIV, B e C dell’epatite di concepire un bambino sano e impedire la trasmissione dell’infezione verso il proprio partner (318-324). Recente è l’interesse per l’infezione da virus zika, trasmessa dalle zanzare del genere anopheles (zanzare giganti),  enedmica nelle aree subsahariane e recentemente diffusasi anche nei paesi occidentali (325-330).
  3. Contrazioni uterine crampiformi: per diminuire la frequenza di questi rischi è utile premedicare la pz. con antispastici, limitare il più possibile il volume del liquido da iniettare, iniettare lentamente. Le tecniche ICI e IPI non sono gravate da questa complicanza.
  4. Gravidanze multiple: esse sono in rapporto all’età della paziente, livello di E2  e numero di follicoli >18 mm al giorno HCG.  Diminuiscono notevolmente con l’avanzare dell’età; non insorgono triplet dopo i 34 anni.  In cicli monofollicolari la percentuale di gravidanze multiple è dello 0.3%. Cicli con 2 follicoli pre-ovulatori presentano una percentuale di GM del 2.8% che si innalza al 4% in presenza di 3-4 follicoli terziari. La presenza di >6 follicoli con diametro compreso fra 12-18 mm (parete esterna-parete interna nella scansione più rotonda) al giorno HCG fa aumentare di 14 volte il rischio GM. Con valori di E2 >1000 pg/ml al giorno HCG si incrementa di 5 volte il tasso di triplet.  Il trattamento con clomifene produce meno GM dei cicli FSH  (tab. 3)  (331-337).
tab. 3 –  COH/GM in cicli AI 
single twin triplet multiple
CC 90.3% 8.0% 1.7% 0.2%
HMG 84% 11.3% 4.0% 0.8%

E’ ampiamente dimostrato che le gravidanze multiple incrementano il rischio di complicazioni in gravidanza come il parto pre-termine, IUGR e pre-eclampsia (338-343).
**************************************************************************************************

inseminazione con sperma congelato: i risultati sono simili a quelli ottenuti utilizzando sperma fresco. Utilizzando lo sperma congelato, si osserva un lieve calo delle percentuali di gravidanza ma in compenso diminuiscono anche i casi di infezioni (tab. 4) (344-350). 

Tab.  4 – Risultati sperm  fresh/cryo

PR (monthly %)

Infezioni

Crampi

Endometriosi

fresh

cryo

fresh

cryo

fresh

cryo

fresh

cryo

IUI

15%

12%

++++

++

++++

++++

++

+ +

ICI

9%

7%

++

+

+

+

- – - -

- – - -

ICI

7%

6%

+

+

- – - -

- – - -

- – - -

- – - -

 

TECNICA IA

 a) Preparazione del seme: la preparazione del seme permette di eliminare il plasma seminale, aumentare la concentrazione percentuale degli spermatozoi e selezionare la frazione di spermatozoi più mobili. Dopo la liquefazione (30′ circa dal momento della raccolta), il liquido seminale è trattato in uno dei modi seguenti:

  1. Swim-up semplice: il medium di cultura viene stratificato sullo sperma e lasciato incubare in ambiente con temperatura non superiore a 35 °C.  Durante questo periodo gli spermi immobili restano sul fondo e quelli mobili migrano in superficie dove sarà facile aspirarli con una pipetta. E’ inadeguata per i casi di oligoastenospermia severa.
  2.  Swim-up da pelletuno o due lavaggi in medium washing (1 ml di sperma + 1 ml di medium),  in centrifuga a 1600 giri/min per 10-15’. Si rimuove il sopranatante,  sul pellet si stratifica 1 ml di medium di cultura e si lascia incubare con provetta inclinata di 45° per 30-45’ in ambiente a temperatura a 37 °C  e, se possibile, con concentrazione di CO2 al 5% (incubatore di Haereus). Aspirare la parte superiore del liquido che dovrebbe contenere gli spz. più mobili che sono migrati in alto. Utilizzando una centrifuga a temperatura controllata (tipo Spermfuge, Shivani Scientific Industries) è possibile migliorare ulteriormente la vitalità e mobilità degli spz.
  3. Puresperm (Percoll-simile): si utilizza in caso di oligoastenospermia severa. Stratificare 1 ml di percoll 90% sul fondo, 1 ml percoll 45% sopra e 1 ml di seme ancora sopra. Centrifugare a 1500 RPM per 20’. Eliminare il sovranatane compreso lo strato di percoll al 45% lasciando in provetta solo lo strato inferiore (percoll 90%). Mescolare attentamente il percoll 90% + 5 ml di medium washing. Centrifugare per 5’ a 3800 RPM. Eliminare il sopranatante. Stratificare sul pellet 0.5 ml di medium di cultura. Incubare in incubatore per 30’. Prelevare il sopranatante che conterrà gli spz. dotati di maggiore mobilità (348-351).
  4. Puresperm + PAF (Platelet-activating factor): PAF contenuto nel liquido seminale umano è positivamente correlato con i parametri di vitalità degli spz. e il PR. Infatti bloccando o rimuovendo dal liquido seminale l’enzima PAF-acetil-idrolasi che metabolizza il PAF, migliorano nettamente tutti i parametri seminali. L’aggiunta di PAF (1-O-alkal-2-O-acetil-glycero-3-fosforilcolina) in concentrazione di  1×10(-9) M migliora i paramentri di motilità degli spz. e  la funzionalità mitocondriali  con  incremento del 30-40% dell’outcome gravidico dei cicli di IA ma soltanto nei casi di normospermia (351-358)
  5. Inseminazione intrauterina con sperma fresco: provoca facilmente violenti contrazioni uterine. Inoltre può provocare infezioni pelviche.

Infine al campione da iniettare vanno aggiunte 600.000 UI di Penicillina G che, oltre a limitare il rischio di infezioni, sembra migliorare la mobilità degli spz.

b) Giorno di inseminazione: L’ovulazione presumibilmente avviene circa 24 ore dopo il picco di LH corrispondente  alla massima estensione e produzione di muco cervicale. nei cicli spontanei dipende dalla lunghezza del ciclo; 11° giorno per i cicli di 25-28 gg; 12° giorno per i cicli di 28 gg e 13°-14° giorno per i cicli di 30-33 giorni.   Nei cicli COH l’inseminazione va eseguita 34-36 ore dopo la somministrazione di HCG oppure dopo 12 ore e dopo 34-36 ore se si decide per una doppia inseminazione. Una o due inseminazioni producono risultati simili: 7.9% vs 9.4% per ciclo di IUI.

c) supplementazione post-inseminazione: supportando la fase luteale  con estrogeni (Progynova® cpr 2 mg) e progesterone (Progeffik® ovuli 100-200 mg/die per via orale o vaginale per 15-20 giorni; Crinone gel vaginale 8%; Prontogest® fiale im 50 mg)  o HCG (2.000 UI al 3°-5°-7° giorno dopo IA) si dovrebbe incrementare l’outcome gravidico in caso di mancato o scarso incremento delle concentrazioni sieriche di progesterone (359-367). 

Tecniche di inseminazione:

  1. Inseminazione intracervicale (ICI): si introducono 0.5 cc di sperma, trattato o non, nel canale cervicale ed il resto lo si pone su una coppetta cervicale che si appoggia al collo dell’utero  e rimosso 6-8 ore dopo dalla stessa paziente. Ha un grande vantaggio: amplia la “finestra” di inseminazione per la creazione di riserve di spermatozoi nelle cripte ghiandolari del canale cervicale; utilizzando questa tecnica si semplifica il monitoraggio che può ridursi al semplice cervical score (371-376).
  2. Inseminazione paracervicale: Si inseriscono 4-5 cc di sospensione con sperma con catetere dotato di cupola a pressione negativa (CCD, Paris) fast perfusion system tubaire (diam. 30) (371-376).
  3. Inseminazione intrauterina (IUI) – Dopo opportuna disinfezione della portio, ben visualizzata mediante applicazione di uno speculum, si procede all’inserimento di catetere da inseminazione (Frydman, Kremer, Wallace) dall’OUE fino a circa 0.5 cm dal fondo uterino e si inietta lentamente in cavità 0.5 cc del liquido seminale precedentemente preparato, aspettando qualche secondo prima di estrarre la cannula. Tutta la procedura deve essere eseguita delicatamente per evitare traumatismi all’endometrio che possano indurre contrazioni e sanguinamento, fattori che spesso alterano la sopravvivenza degli spermatozoi.
    E’ stato dimostrato come 20-30 minuti di riposo dopo IUI hanno un effetto positivo sul tasso di gravidanze sia perché in questo modo la cavità uterina agisce come riserva dalla quale gli spermatozoi sono gradualmente rilasciati verso il sito di fertilizzazione e sia perché si evita, con l’immediata mobilizzazione, l’espulsione della maggior parte degli spermatozoi iniettati (377-383).

Inseminazione Intraperitoneale (IPI)

Proposta per la prima volta nel 1986, si pratica pungendo con un sottile ago (butterfly 19 G) la parete vaginale posteriore (fornice posteriore). Si potrà agevolmente deporre, se possibile sotto guida ecografica, gli spermatozoi capacitati (2 ml) in cavità peritoneale (cavo del Douglas), da dove poi facilmente giungeranno nella tuba per l’eventuale fecondazione. Condizioni preliminari ed essenziali per la riuscita della tecnica sono una normale ovulazione, buona funzionalità tubarica nella captazione dei gameti e capacità degli spermatozoi di sopravvivere nel liquido peritoneale. Il momento migliore per effettuare l’inseminazione è dopo 36 ore dalla somministrazione di HCG. Altri AA. Invece consigliano di verificare prima l’avvenuta deiscenza dei follicoli e quindi praticare subito dopo la IPI. I migliori risultati si verificano nella sterilità inspiegata e nella ostilità del muco cervicale (35-40%) mentre minori risultati si ottengono per dispermia e cause immunologiche (383-386).

Perfusione intratubarica (Fallopian tube sperm perfusion (FSP): Questa tecnica assicura la presenza di una densità di sperma superiore nelle tube al momento dell’ovulazione rispetto all’IUI standard con incrementata PR.  

La preparazione dello sperma è identica a quella utilizzata per lCI, IUI e IPI ma gli  spermatozoi sono diluiti in un maggior volume di medium, fino a  4 ml. Questo volume dovrebbe essere sufficiente perchè il liquido di inseminazione raggiunga e attraversi entrambe le tube (387-393).

Criteri di esclusione sono età della donna >39 anni, tube non perfettamente pervie, oligospermia marcata (spz <10 × 106 per ml). La FSP è effettuata 34-36 ore dopo l’iniezione di 10.000 UI  di HCG. Si utilizza un catetere da transfer e si inietta molto lentamente (3-5 minuti).

Data l’alta pressione (>70 mm Hg) necessaria per ottenere la perfusione tubarica, è necessario bloccare  l’orificio uterino esterno  con pinze di Allis modificate o le similari pinze di Buxton.  

I valori di PR si aggirano sul 30% per ciclo in caso di sterilità inspiegata  e ostilità cervicale mentre si attesta al  7% negli altri casi.  L’elevato tasso di gravidanza per ciclo per FSP rispetto a IUI standard potrebbe essere dovuto a diverse cause: in primo luogo, l’iniezione a pressione dell’inseminato può rimuovere e / o eludere l’ostruzione tubarica transitoria o parziale come quella creata da polipi o tappi di muco tubarici; In secondo luogo, la concentrazione di spermatozoi mobili intorno agli oociti dopo FSP è superiore a quella ottenuta con IUI standard; terzo, FSP produce il passaggio degli spermatozoi nel cavo del Douglas aggiungendo anche un effetto IPI. La FSP potrebbe essere considerata come l’ultima risorsa in caso di fallimento della IUI e prima di ricorrere alle tecniche  FIVET/ICSI (394-398).


BIBLIOGRAFIA

  1.  Cohen MR: Intrauterine insemination. Int J Fertil, 1962;7:235-240.
    ^ Marks JL, Marks D, Lipshultz LI., Artificial insemination with donor semen: the necessity of frequent donor screening., in J Urol., vol. 143, 1990, pp. 308-310.
  2. Marcia C. Inhorn (2003). “Global infertility and the globalization of new reproductive technologies: Illustrations from Egypt”. Social Science and Medicine56: 1837–1851. doi:10.1016/s0277-9536(02)00208-3.
  3. Livio Zanolo, Barcellona Eliana, Zacchè Gabrio, Ginecologia e ostetricia con tavole di F.H. Netter pag 241, Milano, Elsevier Masson srl, 2007, ISBN978-88-214-2730-5.
  4. ^ Sailly F, Pagniez I, Gasnault JP., Homologous artificial insemination and male infertility. Study of prognostic factors, in Rev Fr Gynecol Obstet., vol. 79, 1984, pp. 123-129.
  5. ^ Axnér E., Updates on reproductive physiology, genital diseases and artificial insemination in the domestic cat., in Reprod Domest Anim., vol. 43, luglio 1973, pp. 144-149.
  6. ^ Mor-Yosef S, Schenker JG., Sperm donation in Israel, in Hum Reprod., vol. 10, 1973, pp. 965-967.
  7. Carroll N. Palmer J.: “A comparision of intrauterine versus intracervical insemination in fertile single women”. Feril Steril 2001;75,4:656-660.
  8. Alborzi S, Motazedian S, Parsanezhad M and Jannati S: “Comparision of the effectiveness of single intrauterine insemination (IUI) versus double IUI per cycle in infertile patients”. Fertil Steril 2003;80,3:595-599.
  9. Leonidas Mamas, M.D. (March 2006). “Comparison of fallopian tube sperm perfusion and intrauterine tuboperitoneal insemination:a prospective randomized study”. Fertility and Sterility85 (3): 735–740. doi:10.1016/j.fertnstert.2005.08.025PMID 16500346.
  10. Hurd WW, Randolph JF, Ansbacher R, Menge AC, Ohl DA, Brown AN (February 1993). “Comparison of intracervical, intrauterine, and intratubal techniques for donor insemination”. Fertil. Steril59 (2): 339–42. PMID 8425628.
  11. Ciriminna R et al, Greco E  “Impact of Italian legislation regulating assisted reproduction techniques on ICSI outcomes in severe male factor infertilità: a multicentric survey” Hum Reprod 2007 Sep 22 (9) 2481-7
  12. ^European Journal of Human Genetics - The interface between assisted reproductive technologies and genetics: technical, social, ethical and legal issues ^ Reproductive outcomes after in-vitr… [Curr Opin Obstet Gynecol. 2007] – PubMed – NCBI
  13. Dickey RP: “2002 Guidelines for gametes and embryo donation”. Fertil Steril 2002;77,6 suppl 5:S2-S8.
  14. ^ Verhulst SM, Cohlen BJ, Hughes E, Te Velde E, Heineman MJ., Intra-uterine insemination for unexplained subfertility.rivista =Cochrane Database Syst Rev., vol. 18, ottobre 2006.
  15. ^ Crosignani PG, Intraperitonal insermination in the treatmente of male and unexplained infertility, in Fertil. Steril., vol. 55, 1991, p. 333.
  16. ^ Lu J, Tan Z, Don H, et al. [Evaluating summarize on artificial reproductive technique in China.] (in Chinese). Chin J Hosp Admin 2002;18:577–8.
  17. Panel PChansigaud JPde Meeus JBKamina PMagnin G.  [Intra-uterine artificial insemination. Indications, techniques, results; 83 cases]. J Gynecol Obstet Biol Reprod (Paris). 1995;24(5):496-504.
  18. Goverde AJ,  McDonnell J,  Vermeiden JP, Schats R,  Rutten FF,  Schoemaker J: Intrauterine insemination or in-vitro fertilisation in idiopathic subfertility and male subfertility: a randomised trial and cost-effectiveness analysis. Lancet 2000;355: 13-18.
  19. .^ Hughes EG, Collins JP, Garner PR., Homologous artificial insemination for oligoasthenospermia: a randomized controlled study comparing intracervical and intrauterine techniques., in Fertil Steril., vol. 48, agosto 1987, pp. 278-281.
  20. Crosignani PG, Walters DE,  Soliani A: The ESHRE multicentre trial on the treatment of unexplained infertility: a preliminary report. Hum Reprod 1991;6:953-958
  21. Lim HTRodrigues Pereira A.  Successful artificial insemination in a case of retrograde ejaculation. Eur J Obstet Gynecol Reprod Biol. 1979 Aug;9(4):247-8.
  22. Heasley RN, Traub AI, Boyle DD, Thompson W.Ir  Retrograde ejaculation–pregnancy following artificial insemination. Med J. 1989 Sep; 82(3):128-9.
  23. Garcea N, Caruso A, Campo S, Siccardi P. Retrograde ejaculation: a more convenient method for artificial insemination. Eur J Obstet Gynecol Reprod Biol. 1982 Dec; 14(3):175-8.
  24. Conception following insemination with a freeze-preserved retrograde ejaculate.
    Kapetanakis E, Rao R, Dmowski WP, Scommegna A.Fertil Steril. 1978 Mar; 29(3):360-3.
  25. Yavetz H, Yogev L, Hauser R, Lessing JB, Paz G, Homonnai ZT. Retrograde ejaculation. Hum Reprod. 1994 Mar; 9(3):381-6.
  26. Tsai TCLin MCCheng CJ.  A new sperm collection method for treatment of retrograde ejaculation. J Formos Med Assoc. 1990 Jun;89(6):484-6.
  27. Pashayan N, Lyratzopoulos G, Mathur R: Cost-effectiveness of primary offer of IVF vs. primary offer of IUI followed by IVF (for IUI failures) in couples with unexplained or mild male factor subfertility. BMC Health Serv Res 2006;6:80
  28. Ombelet WVandeput HJanssen MCox AVossen CPollet HSteeno OBosmans ETreatment of male infertility due to sperm surface antibodies: IUI or IVF?  Hum Reprod. 1997 Jun;12(6):1165-70.
  29. Dodson WC, Haney AF. Controlled ovarian hyperstimulation and intrauterine insemination for treatment of infertility.  Fertil Steril. 1991 Mar; 55(3):457-67.
  30. Steures P,  van der Steeg JW, Hompes PG,  Bossuyt PM, Habbema JD,  Eijkemans MJ, Schols
    WA, Burggraaff JM,  van der Veen, Mol BW: Effectiveness of intrauterine insemination in subfertile couples with an isolated cervical factor: a randomized clinical trial.  Fertil Steril 2007;83:1692-1696
  31. Dmowski WP, Pry M, Ding J, Rana N.Cycle-specific and cumulative fecundity in patients with endometriosis who are undergoing controlled ovarian hyperstimulation-intrauterine insemination or in vitro fertilization-embryo transfer.Fertil Steril. 2002 Oct; 78(4):750-6.
  32.  Harlow CR;  Cahill DJ;  Maile LA;  Talbot WM;  Mears J; Wardle PG; AD:University of Bristol, Dept of Obstetrics & Gynaecology, St Michael’s Hospital. TI:Reduced preovulatory granulosa cell steroidogenesis in women with endometriosis. SO:J Clin Endocrinol Metab. 1996 Jan. 81(1). P 426-9.
  33. Rinesi L et al.:”Results of assisted reproductive technologies in patients with endometriosis”. Fertil Steril Jan 2002; 77,1:190-191.
  34. Malgorzata S et al.: “Antizona and antisperm antibodies in women with endometriosis and/or infertility”. Fertil Steril 2001;75,1:97-105.
  35. Buyalos RP, Agarwal SK (October 2000). “Endometriosis-associated infertility”Current Opinion in Obstetrics & Gynecology12 (5): 377–81.
  36. Marshburn PB, Alanis M, Matthews ML, et al. (September 2009). “A short period of ejaculatory abstinence before intrauterine insemination is associated with higher pregnancy rates”. Fertil. Steril93 
  37. Collection and examination of human semen. In: WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction. Fourth edition. Cambridge (UK): Cambridge University Press. 1999;4-5.  
  38. Essig, Maria G. (2007-02-20). Van Houten, Susan; Landauer, Tracy, eds. “Semen Analysis”.  Healthwise. Reviewed by Martin Gabica and Avery L. Seifert. WebMD. Retrieved 2007-08-05
  39. Bhattacharya S et al: Clomifene citrate or unstimulated intrauterine insemination compared with expectant management for unexplained infertility: pragmatic randomised controlled trial. BMJ 2008;337:716-723.
  40. Bernard J.Cohlen, Egbert R.te Velde, Roelof J.van Kooij, Caspar W.N.Looman and J. Dik F. Habbema Controlled ovarian hyperstimulation and intrauterine insemination for treating male subfertility: a controlled study. Human Reproduction vol.13 no.6 pp.1553–1558, 1998
  41. van Rumste MME, den Hartog JE,  Dumoulin JCM, Evers JLH,  Land JA: Is controlled ovarian stimulation in intrauterine insemination an acceptable therapy in couples with unexplained non-conception in the perspective of multiple pregnancies? Hum Reprod 2006;21: 701-704
  42. Claman P: “Simplifying superovulation and intrauterine insemination treatment: evidence and clinical decision making”. Fertil Steril 2004;82,1:32-33.
  43. Ubaldi FM, Rienzi L, Baroni E, Ferrero S, Iacobelli M, Minasi MG, Sapienza F, Romano S, Colasante A, Litwicka K, Greco E “Hopes and facts about mild ovarian stimulation” Reprod Biomed Online 2007 Jun 14 (6) 675-81
  44. Heijnen EM, Eijkemans MJ,  De Klerk C, Polinder S,  Beckers NG,  Klinkert ER, Broekmans FJ, Passchier J, Te Velde ER, Macklon NS  et al.: A mild treatment strategy for in-vitro fertilisation: a randomised non-inferiority trial. Lancet 2007;369:743-749.
  45. Crosignani PG, Somigliana E: Intrauterine Insemination Study Group. Effect of GnRH antagonists in FSH mildly stimulated intrauterine insemination cycles: a multicentre randomized trial. Hum Reprod 2007;22:500-505
  46. Dankert T,  Kremer JAM,  Cohlen  BJ, Hamilton CJCM, Pasker-de Jong PCM, Straatman H, van Dop PA: A randomized clinical trial of clomiphene citrate versus low dose recombinant FSH for ovarian hyperstimulation in intrauterine insemination for unexplained and male subfertility. Hum Reprod 2007;22:792-797
  47. Baart EB et al: Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod 2007;22:980-988
  48. Balasch J et al: Late low-dose pure follicle stimulating hormone for ovarian stimulation in intra-uterine insemination cycles. Hum Reprod 1994;9:1863-1866
  49. Bensdorp AJ, Cohlen BJ, Heineman MJ, Vandekerckhove P.  Intra-uterine insemination for male subfertility. Cochrane Database Syst Rev. 2007 Jul 18; (3):CD000360. Epub 2007 Jul 18.
  50. Athaullah N, Proctor M, Johnson NP.Cochrane Database Syst Rev. 2002; (3):CD003052.

    Ovarian stimulation in intrauterine insemination with donor sperm: a randomized study comparing clomiphene citrate in fixed protocol versus highly purified urinary FSH.

  51. Matorras R, Diaz T, Corcostegui B, Ramón O, Pijoan JI, Rodriguez-Escudero FJ.    A randomized clinical trial of clomiphene citrate versus low dose recombinant FSH for ovarian hyperstimulation in intrauterine insemination cycles for unexplained and male subfertility. Hum Reprod. 2002 Aug; 17(8):2107-11.
  52. Matorras R, Diaz T, Corcostegui B, Ramon O, Pijoan JI, Rodriguez-Escudero FJ: Ovarian stimulation in intrauterine insemination with donor sperm: a randomized study comparing clomiphene citrate in fixed protocol versus highly purified urinary FSH. Hum Reprod 2002;17:2107-2111
  53. Ecochard R, Mathieu C,  Royere D,  Blache G, Rabilloud M,  Czyba JC: A randomized prospective study comparing pregnancy rates after clomiphene citrate and human menopausal gonadotropin before intrauterine insemination. Fertil Steril 2000;73:90-93
  54. Arici A, Byrd W,  Bradshaw K, Kutteh WH, Marshburn P, Carr BR:  Evaluation of clomiphene citrate and human chorionic gonadotropin treatment: a prospective, randomized, crossover study during intrauterine insemination cycles.  Fertil Steril 1994;61:314-318
  55. Misso ML, Costello MF, Garrubba M, Wong J, Hart R, Rombauts L, Melder AM, Norman RJ, Teede HJ. Metformin versus clomiphene citrate for infertility in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update 2013;19:2-11
  56. Palomba S, Falbo A, Orio F Jr, Tolino A, Zullo F. Efficacy predictors for metformin and clomiphene citrate treatment in anovulatory infertile patients with polycystic ovary syndrome. Fertil Steril 2009;91:2557-67.
  57. Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, Steinkampf MP, Coutifaris C, McGovern PG, Cataldo NA, Gosman GG, Nestler JE, Giudice LC, Leppert PC, Myers ER, Cooperative Multicenter Reproductive Medicine Network . Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med 2007;356:551-566
  58. Cantineau AECohlen BJHeineman MJ. Ovarian stimulation protocols (anti-oestrogens, gonadotrophins with and without GnRH agonists/antagonists) for intrauterine insemination (IUI) in women with subfertility.  Cochrane Database Syst Rev. 2007 Apr 18;(2):CD005356.
  59. Cantineau AE, Cohlen BJ, Heineman MJ.. Oral versus injectable ovulation induction agents for unexplained subfertility. Cochrane Database Syst Rev. 2007 Apr 18; (2):CD005356. Epub 2007 Apr 18
  60. Albano C, Grimbizis G, Smitz J, Riethmuller-Winzen H, Reissman T, Van Steirteghem A, Devroey P  The luteal phase of nonsupplemental cycles after ovarian superovulation with human menopausal gonadotropin and the gonadotropin-releasing hormone antagonist Cetrorelix. Fertil Steril 1998;70:357-359
  61. Bellver J, Labarta E, Bosch E, et al. (June 2009). “GnRH agonist administration at the time of implantation does not improve pregnancy outcome in intrauterine insemination cycles: a randomized controlled trial”. Fertil. Steril94 (3): 1065–71. 
  62. Bellver J, Labarta E, Bosch E, et al. (June 2009). “GnRH agonist administration at the time of implantation does not improve pregnancy outcome in intrauterine insemination cycles: a randomized controlled trial”. Fertil. Steril94 (3): 1065–71.
    55(suppl 1):101-108
  63. Macklon NS, Fauser BC: Impact of ovarian hyperstimulation on the luteal phase. J Reprod Fertil 2000;
  64. Lunenfeld B: Historical perspectives in gonadotrophin therapy. Hum Reprod Update 2004;10:453-467
  65. Mitwally MF, Casper RF. Aromatase inhibition: a novel method of ovulation induction in women with polycystic ovary syndrome. Reprod Technol 2000;10:244-247.
  66. Mitwally MF, Casper RF. Use of an aromatase inhibitor for induction of ovulation in patients with inadequate response to clomiphene citrate. Fertil Steril 2001;75:305-309
  67. Casper RF, Mitwally MF. Review: aromatase inhibitors for ovulation induction. J Clin Endocrinol Metab 2006;Mitwally MF, Said T, Galal A, et al. Letrozole step-up protocol: a successful superovulation protocol. Fertil Steril, 2008; 89, Supplement 1, S23–S24.
  68. Casper RF, Mitwally MF. Use of the aromatase inhibitor letrozole for ovulation induction in women with polycystic ovarian syndrome. Clin Obstet Gynecol 2011;54:685-9591:760-71
  69. ESHRE Capri Workshop Group Health and fertility in World Health Organization group 2 anovulatory women. Hum Reprod Update 2012;18:586-599.
  70. Brown J, Farquhar C, Beck J, Boothroyd C, Hughes E. Clomiphene and anti-oestrogens for ovulation induction in PCOS. Cochrane Database Syst Rev 2009;4:CD002249.
  71. Legro RS, Brzyski RG, Diamond MP, Coutifaris C, Schlaff WD, Alvero R, Casson P, Christman GM, Huang H, Yan Q, Haisenleder DJ, Barnhart KT, Bates GW, Usadi R,Lucidi R, Baker V, Trussell JC, Krawetz SA, Snyder P, Ohl D, Santoro N, Eisenberg E, Zhang H; National Institute of Child Health and Human Development Reproductive Medicine Network. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. N Engl J Med 2014;371:119-129.
  72. Badawy A, Shokeir T, Allam AF, Abdelhady H. Pregnancy outcome after ovulation induction with aromatase inhibitors or clomiphene citrate in unexplained infertility. Acta Obstet Gynecol Scand 2009b;88:187-191
  73. Tredway DR, Schertz JC. Anastrozole versus clomiphene citrate: which is better for ovulation induction? Fertil Steril 2011;95:1549-51
  74. . Franik S, Kremer JA, Nelen WL, Farquhar C. Aromatase inhibitors for subfertile women with polycystic ovary syndrome. Cochrane Database Syst Rev 2014 24;2:CD010287
  75. Jayasena CN, Franks S. The management of patients with polycystic ovary syndrome. Nat Rev Endocrinol 2014;10:624-636.
  76. Orio F, Palomba S. Reproductive endocrinology: new guidelines for the diagnosis and treatment of PCOS. Nat Rev Endocrinol 2014;10:130-132.
  77. Hudecova M, Holte J, Olovsson M, Sundström Poromaa I. Long-term follow-up of patients with polycystic ovary syndrome: reproductive outcome and ovarian reserve. Hum Reprod 2009;24:1176-1183.
  78. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, Welt CK. Diagnosis and treatment of polycystic ovary syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2013;98:4565-4592.
  79. Palomba S. Aromatase inhibitors for ovulation induction. J Clin Endocrinol Metab 2015;100:1742-7
  80. Gómez-Palomares JL,  Acevedo-Martín B,  Chávez M, Manzanares MA,  Ricciarelli E, Hernández ER: Multifollicular recruitment in combination with gonadotropin-releasing hormone antagonist increased pregnancy rates in intrauterine insemination cycles. Fertil Steril 2008;89: 620-624
  81. Lambalk CB, Leader A, Olivennes F, Fluker MR et al: Treatment with the GnRH antagonist ganirelix prevents premature LH rises and luteinization in stimulated intrauterine insemination: results of a double-blind, placebo-controlled, multicentre trial. Hum Reprod 2006;21:632-639
  82. Lee TH, Lin YH, Seow KM, Hwang JL, Tzeng CR, Yang YS: Effectiveness of cetrorelix for the prevention of premature luteinizing hormone surge during controlled ovarian stimulation using letrozole and gonadotropins: a randomized trial. Fertil Steril 2008;90:113-120
  83. Cantineau AE,   Cohlen BJ,  Heineman MJ: Ovarian stimulation protocols (anti-oestrogens, gonadotrophins with and without GnRH agonists/antagonists) for intrauterine insemination (IUI) in women with sub fertility (Review). Cochrane Database Syst Rev 2007. Art No.: CD005356
  84. Jirge PR, Patil RS. Comparison of endocrine and ultrasound profile during ovulation induction with clomiphene citrate and letrozole in ovulatory volunteer women. Fertil Steril 2010; 93:174-183
  85. Greil A. Infertility and psychological distress: A critical review of the literature. Soc Sci Med 1997;45:1679-1704.
  86. Meyers M, Diamond R, Kezur D, et al. An infertility primer for family therapists: I. Medical, social, and psychological dimensions. Fam Process 1995;34:231-40.
  87. Domar AD, Seibel MM. Emotional aspects of infertility. In Seibel MM (ed.). Infertility: A Comprehensive Text. Stamford: Appleton & Lange, 1997:29-44.
  88. Mahlstedt PP. The psychological component of infertility. Fertil Steril 1985;43:335-46.
  89. Eugster A, Vingerhoets AJ. Psychological aspects of in vitro fertilization: a review. Soc Sci Med 1999;48:575-89.
  90. Baram D, Tourtelot E, Muechler E, Huang K. Psychological adjustment following unsuccessful in vitro fertilization. J Psychosom Obstet Gynaecol 1988;8:181.
  91. Whiteford LM, Gonzalas l. Stigma: the hidden burden of infertility. Soc Sci Med 1995;40:27-36.
  92. Laya Farzadi, Aliyeh Ghasemzadeh TWO MAIN INDEPENDENT PREDICTORS OF DEPRESSION AMONG INFERTILE WOMEN: AN ASIAN EXPERIENCE.  [Taiwan J Obstet Gynecol 2008;47(2):163–167]
  93. World Health Organization. Infertility. Geneva: World Health Organization, Aug 22, 2006
  94. Lapane KL, Zierler S, Lasater TM, Stein M, Barbour MM, Hume AL. Is a history of depressive symptoms associated with an increased risk of infertility in women? Psychosom Med 1995;57:509–13
  95. Brasile D, Katsoff B, Check JH. Moderate or severe depression is uncommon in women seeking infertility therapy according to the beck depression inventory. Clin Exp Obstet Gynecol 2006;33:16–8.
  96. Guz H, Ozkan A, Sarisoy G, Yanik F, Yanik A. Psychiatric symptoms in Turkish infertile women. J Psychosom Obstet Gynaecol 2003;24:267–71.
  97. Beutel M, Kupfer J, Kirchmeyer P, et al. Treatment-related stresses and depression in couples undergoing assisted reproductive treatment by IVF or ICSI. Andrologia 1999;31: 27–35
  98. Saleh RA, Ranga GM, Raina R, et al. Sexual dysfunction in men undergoing infertility evaluation: a cohort observational study. Fertil Steril 2003;79:909-12.
  99. lover L, Gannon K, Sherk I, Abel P. Distress in sub-fertile men: a longitudinal study. J Reprod Infant Psychol 1996;14:23-36.
  100. Kedem P, Milkulincer M, Nathanson YE, Bartoov B. Psychological aspects of male infertility. Br J Med Psychol 1990;63:73-80.
  101. Benazon N, Wright J, Sabourin S. Stress, sexual satisfaction, and marital adjustment in infertile couples. J Sex Marital Ther 1992;18:273-84.
  102. Volpicelli V., Volpicelli T., D’Antò V., Tolino A.: “Il rapporto ginecologo/paziente nella richiesta sessuologica”. Atti SIGO 2000; Vol. II:255-267.
  103. Volpicelli V.: “La sessualità in ginecologia”.  3° Congresso Nazionale di Fitoterapia e Fitofarmacologia, Napoli, 2000.
  104. ^Kaplan H.S., (1974) Le Nuove Terapie Sessuali Bompiani, Milano
  105. ^ Jannini E.A.,Lenzi A., Maggi M.A.(2007) Sessuologia medica. Trattato di psicosessuologia e medicina della sessualità. Elsevier, Milano.
  106. ^ Simonelli C. (a cura di), (2000) Diagnosi e trattamento delle Disfunzioni Sessuali. Franco Angeli, Milano
  107. van der Velde J. Laan E. Everaerd W.: “Vaginismus, a component of a general defensive reaction. An investigation of pelvic floor muscle activity during exposure to emotion-inducing film excerpts in women with and without vaginismus”. International Urogynecology Journal of Pelvic Floor Dysfunction, 12, 328-331, 2001
  108. Min JK et al. Prediction of coronary heart disease by erectile dysfunction in men referred for nuclear stress testing. Arch Intern Med. 2006 Jan 23;166(2):201-6
  109. Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Washington DC: American Psychiatric Association. 2000.Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Washington DC: American Psychiatric Association. 2000.Irvine, Janice (2005). Disorders of Desire. Philadelphia: Temple University Press. p. 265.
  110. McLaney MA, Tennen H, Affleck G, Fitzgerald T. Reactions to impaired fertility: the vicissitudes of primary and secondary control appraisals. Womens Health: Research on Gender, Behavior, and Policy 1995;2:143-59.
  111. Brotto LA, Chik HM, Ryder AG, Gorzalka BB, Seal B (December 2005). “Acculturation and sexual function in Asian women”Archives of Sexual Behaviour 34 (6): 613–626. doi:10.1007/s10508-005-7909-6.
  112. Mitchell KR, Mercer CH (September 2009). “Prevalence of Low Sexual Desire among Women in Britain: Associated Factors”The Journal of Sexual Medicine 6 (9): 2434–2444. doi:10.1111/j.1743-6109.2009.01368.xPMID 19549088.
  113. Clayton AH (July 2010). “The pathophysiology of hypoactive sexual desire disorder in women”Int J Gynaecol Obstet 110 (1): 7–11. doi:10.1016/j.ijgo.2010.02.014PMID 20434725.
  114. Tiefer L, Hall M, Tavris C (2002). “Beyond dysfunction: a new view of women’s sexual problems”. J Sex Marital Ther 28 (Suppl 1): 225–32. doi:10.1080/00926230252851357PMID 11898706.
  115. Freeman EW, Boxer AS, Rickels K, et al. Psychological evaluation and support in a program of in vitro fertilization and embryo transfer. Fertil Steril 1985;43(1):48-53.
  116. Cwikel J, Gidron Y. Psychological interactions with infertility among women. Eur J Obstet Gynecol Reprod Biol 2004;117:126-31.
  117. Domar AD, Zuttermeister PC, Seibel M, Benson H. Psychological improvement in infertile women after behavioral treatment: a replication. Fertil Steril 1992;58:144-7.
  118. Downey J, McKinney M. The psychiatric status of females presenting for infertility evaluation. Am J Orthopsychiatry 1992;62:196-205.
  119. Leiblum SR, Greenfield D. The course of infertility: immediate and long-term reactions. In Leiblum SR (ed.). Infertility, Psychological Issues and Counseling Strategies. New York: John Wiley & Sons, 1997:83-102.
  120. Daniluk JC. Gender and infertility. In Leiblum SR (ed.). Infertility, Psychological Issues and Counseling Strategies. New York: John Wiley & Sons, 1997:103-25.
  121. Glover L, Abel PD, Gannon K. Male sub fertility: is pregnancy the only issue? Psychological response matter too—and are different in men. Br J Clin Psychol 1998;35:531-42.
  122. Webb RE & Daniluk JC. The end of the line: infertile men’s experience of being unable to produce a child. Men and Masculinities 1999;2:6.
  123. Wright J, Bissonnette F, Duchesne C, et al. Psychological distress and infertility: men and women respond differently. Fertil Steril 1991;55:100-8.
  124. Aliyeh G, Laya F. Quality of life and its correlates among a group of infertile Iranian women. Med Sci Monit 2007;13: CR313–7.
  125. Joseph F. Fletcher (2015). Morals and Medicine: The Moral Problems of the Patient’s Right to Know the Truth, Contraception, Artificial Insemination, Sterilization, Euthanasia. Princeton University Press. p. 101. ISBN 9781400868377.
  126. Jump up^ “Paragraph 2377″Catechism of the Catholic Church, Second Edition. Libreria Editrice Vaticana. 2012.
  127. Giovanni Russo: La procreazione Assistita: la coppia cristiana cosa può accettare? Rivista Maria Ausiliatrice 2005-3
  128. One versus two inseminations per cycle in intrauterine insemination with sperm from patients’ husbands: a systematic review of the literature.
  129. Ragni G, Somigliana E,  Vegetti W: Timing of intrauterine insemination: where are we? ,
    Osuna C, Matorras R, Pijoan JI, Rodríguez-Escudero FJ.Fertil Steril. 2004 Jul; 82(1):17-24.
  130. Cantineau AE, Cohlen BJ: Dutch IUI Study Group, The prevalence and influence of luteinizing hormone surges in stimulated cycles combined with intrauterine insemination during a prospective cohort study. Fertil Steril 2007;88:107-112
  131. Gomez-Polomares JL, Juliia B, Acevedo-Martin B, Martinez-Burgos M, Hernandez ER, Ricciarelli E: Timing ovulation for intrauterine insemination with a GnRH antagonist. Hum Reprod 2005;20: 268-372.
  132. Kossoy LR, Hill GA, Parker RA, Rogers BJ, Dalglish CS, Herbert GM 3rd, Wentz AC. Luteinizing hormone and ovulation timing in a therapeutic donor insemination program using frozen semen.
  133. Cantineau AEP,  Heineman MJ, Cohlen BJ: Single versus double intrauterine insemination (IUI) in stimulated cycles for subfertile couples.  Cochrane Database Syst Rev 2003. Art. No.: CD003854, doi:10.1002/14651858.CD003854
  134. Bagis T, Haydardedeoglu B, Kilicdag EB, Cok T, Simsek E, Parlakgumus AH (May 2010). “Single versus double intrauterine insemination in multi-follicular ovarian hyperstimulation cycles: a randomized trial”. Hum Reprod25 (7): 1684–90. doi:10.1093/humrep/deq112PMID 20457669.
  135. Osuna C, Matorras R, Pijoan Ji, Rodriguez-Escudero FJ: “One versus two inseminations per cycle in intrauterine insemination with sperm from patient’s husbands: a systematic review of the literature”. Fertil Steril 2004, 82,1:17-26.
  136. Ragni G, Maggioni P, Guermandi E, Testa A, Baroni E, Colombo M, Crosignani PG. Efficacy of double intrauterine insemination in controlled ovarian hyperstimulation cycles. Fertil Steril. 1999 Oct; 72(4):619-22
  137. Double versus single homologous intrauterine insemination for male factor infertility: a systematic review and meta-analysis. Zavos A, Daponte A, Garas A, Verykouki C, Papanikolaou E, Anifandis G, Polyzos NP.Asian J Androl. 2013 Jul; 15(4):533-8. Epub 2013 May 27.
  138. Wei LiuFei GongKeli Luo, and Guangxiu Lu Comparing the pregnancy rates of one versus two intrauterine inseminations (IUIs) in male factor and idiopathic infertility.  J Assist Reprod Genet. 2006 Feb; 23(2): 75–79.
  139. Silverberg KM, Johnson JV, Olive DL, Burns WN, Schenken RS. A prospective, randomized trial comparing two different intrauterine insemination regimens in controlled ovarian hyperstimulation cycles. Fertil Steril. 1992;57:357–361.
  140. Guzick DS. For now, one well-timed intrauterine insemination is the way to go. Fertil Steril. 2004;82:30–31. doi: 10.1016/j.fertnstert.2004.02.101.
  141. Alborzi S, Motazedian S, Parsanezhad ME, Jannati S. Comparison of the effectiveness of single intrauterine insemination (IUI) versus double IUI per cycle in infertile patients. Fertil Steril. 2003;80:595–599. doi: 10.1016/S0015-0282(03)00980-4.
  142. Ombelet W: IUI and evidence-based medicine: an urgent need for translation into our clinical practice. Gynecol Obstet Invest 2005;59:1-2
  143. Guzick DS, Carson SA, Coutifaris C, Overstreet JW,  Factor-Litvak P,  Steinkampf MP,  Hill JA, Mastroianni L, Buster JE, Nakajima , et al.  Efficacy of superovulation and intrauterine insemination in the treatment of infertility. N Engl J Med 1999;340:177-183
  144. Agarwal S, Mittal  S, A randomised prospective trial of intrauterine insemination versus timed intercourse in superovulated cycles with clomiphene  Indian J Med Res  2004;120:519-522
  145. Emperaire JC, Verdaguer S, Meulet-Girard Y, Audebert AJ.  [Intra-uterine insemination with activated sperm. Results of conception compared in the various types of infertility in spouses].  J Gynecol Obstet Biol Reprod (Paris). 1988; 17(3):387-95.
  146. Miller, D.C., Hollenbeck, B.K., Smith, G.D., Randolph, J.F., Christman, G.M., Smith, Y.R. et al. Processed total motile sperm count correlates with pregnancy outcome intrautrine insemination.  Urology. 2002;60: 497–501
  147. Ombelet, W., Vandeput, H., Van de Putte, G., Cox, A., Janssen, M., Jacobs, P. et al. Intrauterine insemination after ovarian stimulation with clomiphene citrate (predictive potential of inseminating motile count and sperm morphology) . Hum Reprod. 1997; 12: 1458–1463
  148. Pasqualotto, E.B., Daitch, J.A., Hendin, B.N., Falcone, T., Thomas, A.J. Jr, Nelson, D.R. et al.Relationship of total motile sperm count and percentage motile sperm to successful pregnancy rates following intrauterine insemination. J Assist Reprod Genet. 1999; 16: 476–482
  149. Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H (November 2008). “Predictive factors for pregnancy after intrauterine insemination (IUI): An analysis of 1038 cycles and a review of the literature”. Fertil. Steril93 (1): 79–88.
  150. Ibérico G, Vioque J,  Ariza N,  Lozano JM, Roca M, Llácer J,  Bernabeu R: Analysis of factors influencing pregnancy rates in homologous intrauterine insemination. Fertil Steril 2004;81: 1308-1312
  151. Stone, B.A., Vargyas, J.M., Ringler, G.E., Stein, A.L., and Marrs, R.P. Determinants of the outcome of intrauterine insemination (analysis of outcomes of 9963 consecutive cycles) . Am J Obstet Gynecol. 1999; 180: 1522–1534
  152. Karabinus, D.S. and Gelety, T.J. The impact of sperm morphology evaluated by strict criteria on intrauterine insemination success. Fertil Steril. 1997; 67: 536–541
  153. Benoff S, Hurley IR, Millan C, Napolitano B and Centola GM: “Seminal lead concentrations negatively affect outcomes of artificial insemination”. Fertil Steril 2003; 80,3,517-525.
  154. Benoff, S., Jacob, A., and Hurley, I.R. Male infertility and environmental exposure to lead and cadmium. Hum Reprod Update. 2000; 6: 107–121
  155. Benoff, S., Centola, G.M., Millan, C., Napolitano, B., Marmar, J.L., and Hurley, I.R. Increased seminal plasma lead levels adversely affect the fertility potential of sperm in IVF. Hum Reprod. 2003; 18: 374–383
  156. Telisman, S., Cvitkovic, P., Juraasovic, J., Pizent, A., Gavella, M., and Rocic, B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc and copper in men. Environ Health Perspect. 2000; 108: 45–53
  157. Sallmen, M., Lindbohm, M.L., and Nurminen, M. Paternal exposure to lead and infertility. Epidemiology.  2000; 11: 148–152
  158. Sallmen, M., Lindbohm, M.L., Anttila, A., Taskinen, H., and Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology. 2000; 11: 141–147
  159. Millan, C., Sokol, R.Z., Shi, Q., Hurley, I.R., Centola, G.M., Ilasi, J. et al. Lead induces epigenetic modification of rat testicular gene expression (a DNA microarray study) . in: B. Robaire, H. Chemes, C.R. Morales (Eds.) Andrology in the 21st century. Proceedings of the VII International Congress on Andrology. Short communications. Medimond Publishing Co. Inc, Englewood, NJ; 2001: 335–339
  160. van Rumste MME,  Custers IM,  van der Veen F,  van Wely M, Evers JLH,  Mol BWJ: The influence of the number of follicles on pregnancy rates in intrauterine insemination with ovarian hyperstimulation: a meta-analysis. Hum Reprod Update 2008;14:563-570
  161. Holte J, Brodin T, Berglund L, Hadziosmanovic N, Olovsson M, Bergh T. Antral follicle counts are strongly associated with live-birth rates after assisted reproduction, with superior treatment outcome in women with polycystic ovaries. Fertil Steril 2011;96:594-599.
  162. Wiser A, Shalom-Paz E, Hyman JH, Sokal-Arnon T, Bantan N, Holzer H, Tulandi T. Age-related normogram for antral follicle count in women with polycystic ovary syndrome. Reprod Biomed Online 2013;27:414-418
  163. Dickey RP, Olar TT, Taylor SN, Curole DN, Rye PH, Matulich EM. Relationship of follicle number, serum estradiol, and other factors to birth rate and multiparity in human menopausal gonadotropin-induced intrauterine insemination cycles. Fertil Steril 1991;56:89 –92
  164. Dickey RP, Olar TT, Taylor SN, Curole DN, Rye PH. Relationship of follicle number and other factors to fecundability and multiple pregnancy in clomiphene citrate-induced intrauterine insemination cycles. Fertil Steril 1992;57:613–619. 
  165. Dickey RP, Taylor SN, Lu PY, Sartor BM, Rye PH, Pyrzak R. Effect of diagnosis, age, sperm quality, and number of preovulatory follicles on the outcome of multiple cycles of clomiphene citrate-intrauterine insemination. Fertil Steril 2002;78:1088– 1095.
  166. Pittrof RU, Shaker A, Dean N, Bekir JS, Campbell S, Tan SL. Success of intrauterine insemination using cryopreserved donor sperm is related to the age of the woman and the number of preovulatory follicles. J Assist Reprod Genet 1996;13:310–314
  167. Silverberg KM, Olive DL, Burns WN, Johnson JV, Groff TR, Schenken RS. Follicular size at the time of human chorionic gonadotropin administration predicts ovulation outcome in human menopausal gonadotropin-stimulated cycles. Fertil Steril 1991;56:296–300.
  168. Steures P, van der Steeg JW, Verhoeve HR, van Dop PA, Hompes PGA, Bossuyt PMM, van der Veen F, Habbema JDF, Eijkemans MJC, Mol BWJ. Does ovarian hyperstimulation in intrauterine insemination for cervical factor subfertility improve pregnancy rates? Hum Reprod 2004;19:2263– 2266.
  169. O¨ zcakir HT, Goker EN, Terek MC, Adakan S, Ulukus M, Levi R, Tavmergen E. Relationship of follicle number, serum estradiol level, and other factors to clinical pregnancy rate in gonadotropin-induced intrauterine insemination cycles. Arch Gynecol Obstet 2002;266:18– 20
  170. Dickey RP, Taylor SN, Lu PY, Sartor BM, Rye PH, Pyrzak R. Relationship of follicle numbers and estradiol levels to multiple implantation in 3,608 intrauterine insemination cycles. Fertil Steril 2001;75:69–78. 
  171. Tsai HD, Chang CC, Hsieh YY, Lee CC, Lo HY. Artificial insemination. Role of endometrial thickness and pattern, of vascular impedance of the spiral and uterine arteries, and of the dominant follicle. J Reprod Med 2000;45:195– 200.
  172. Volpicelli V., Volpicelli T, Dale B: “IUS in cicli indotti: fattore predittivo per outcome gravidico”. Giornale SIFES;1998;5,2:53-56
  173. Rashidi BH, Sadeghi M, Jafarabadi M, Tehrani Nejad ES.: Relationships between pregnancy rates following in vitro fertilization or intracytoplasmic sperm injection and endometrial thickness and pattern. Eur J Obstet Gynecol Reprod Biol. 2005 Jun 1; 120(2):179-84. 
  174. Heger A, Sator M, Pietrowski D.:  Endometrial Receptivity and its Predictive Value for IVF/ICSI-Outcome. Geburtshilfe Frauenheilkd. 2012 Aug; 72(8):710-715. 
  175. Mercé LT, Barco MJ, Bau S, Troyano J.:  Are endometrial parameters by three-dimensional ultrasound and power Doppler angiography related to in vitro fertilization/embryo transfer outcome? Fertil Steril. 2008 Jan; 89(1):111-7. Epub 2007 Jun 6.
  176. R.P. Dickey, T.T. Olar, D.N. Curole, S.N. Taylor and P.H. Rye: Endometrial pattern and thickness associated with pregnancy outcome after assisted reproduction technologies. Human Reproduction Volume 7, Issue 3 Pp. 418-421.
  177. Hershko-Klement A, Tepper R. Ultrasound in assisted reproduction: a call to fill the endometrial gap. Fertil Steril. 2016 Jun; 105(6):1394-1402.e4. Epub 2016 Apr 29.
  178. Jing Zhao, Qiong Zhang and Yanping Li: The effect of endometrial thickness and pattern measured by ultrasonography on pregnancy outcomes during IVF-ET cycles. Reproductive Biology and Endocrinology 2012 10:100
  179. Barker MA, Boehnlein LM, Kovacs P, Lindheim SR: Follicular and luteal phase endometrial thickness and echogenic pattern and pregnancy outcome in oocyte donation cycles. J Assist Reprod Genet. 2009, 26: 243-249. 10.1007/s10815-009-9312-z.
  180. McWilliams GD, Frattarelli JL: Changes in measured endometrial thickness predict in vitro fertilization success. Fertil Steril. 2007, 88: 74-81. 10.1016/j.fertnstert.2006.11.089.
  181. Amir W, Micha B, Ariel H, Liat LG, Jehoshua D, Adrian S: Predicting factors for endometrial thickness during treatment with assisted reproductive technology. Fertil Steril. 2007, 87: 799-804. 10.1016/j.fertnstert.2006.11.002.
  182. Richter KS, Bugge KR, Bromer JG, Levy MJ: Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst-stage embryos. Fertil Steril. 2007, 87: 53-59. 10.1016/j.fertnstert.2006.05.064.
  183. Zhang XQ, Chen CH, Confino E, Barnes R, Milad M, Kazer RR: Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2005, 83: 336-340. 10.1016/j.fertnstert.2004.09.020.
  184. Kovacs P, Matyas S, Boda K, Kaali SG: The effect of endometrial thickness on IVF/ICSI outcome. Hum Reprod. 2003, 18: 2337-2341. 10.1093/humrep/deg461
  185. Basir, G.S., O, W.S., So, W.W., Ng, E.H., and Ho, P.C. Evaluation of cycle-to-cycle variation of endometrial responsiveness using transvaginal sonography in women undergoing assisted reproduction. Ultrasound Obstet. Gynecol. 2002; 19: 4844–4889Chen 
  186. SL, Wu FR, Luo C, Chen X, Shi XY, Zheng HY, Ni YP.  Combined analysis of endometrial thickness and pattern in predicting outcome of in vitro fertilization and embryo transfer: a retrospective cohort study. Reprod Biol Endocrinol. 2010 Mar 24; 8:30. Epub 2010 Mar 24.
  187. Al-Ghamdi, A., Coskun, S., Al-Hassan, S., AL-Rejjal, R., and Awartani, K. The correlation between endometrial thickness and outcome of in vitro fertilization and embryo transfer (IVF-ET) outcome. Reprod. Biol. Endocrinol. 2008; 6: 37
  188. Catizone F.A., Ianniruberto A.: Ecografia Transvaginale Testo Atlante,Edizioni C.I.C. Roma ottobre 1992.
  189. DUffiel S., Picker R-: Ultrasonic evaluation of the uterus in the normal menstrual cycle. Med.  Ultrasaund, 5, 70-75, 1981.
  190. Fleischer A.C., Kalemeris G., Entman S-: Sonographic depiction of the endometrium during normal cycles. I. Ultrasound Med.  Biol. 12,271-276, 1986.
  191. Johanisson E. Parker RR.  A., Landgren B.M. DiciPalusy E.: morphometric analysis of the human endometrium in relation of peripherai hormone levels. Pertil.  Steril. 38, 564-568, 1982.Slang
  192. en T., van Herendael B.J., Verheugen C.:  The assessment of the endometrium by intravaginal ultrasound in stimulated cycles in IVF. VI World Congress In Vitro Fertilization and Alternative Assisted Reproduction, April 2-7, 1989, ierusalem,Israel, Abstracta; @.67.Prietl G
  193. ., Welker B.,GembruchU., et al.: endosonography of the endometrium with respect to IVF outcome.  VI World Congress In Vitro and Assisted Reproduction, April 2-7, 1989, ierusalem,Israel, Alstracts, p.
  194. 108.Isacov D. Boldes R. Thaler I., et al.: Transvaginal ultrasonographic assessment of the endometrium and the prediction of implantation after embryo transfer in IVF patients. VI World Congress In Vitro Fertilization and Alternative Assisted Reproduction, April 2-7, 1989, Ierusalem, Isarel, Abstracts, p. 133.
  195. Gonen Y. Casper R.F.: Endometrial thickness and growth during ovarian stimulation: A possibie predictor of implantation in vitro fertilization. 45th Annual Meeting of The American Fertility Society, November 13-16, 1989,San Francisco.  Abstracts S141.
  196. Gonen Y. Casoer R.F.: prediction of impiantation by the sonographic appearance of the endometrium durin controlled ovarian stimulation for in – vitro fertilization.  J.    in vitro Fert Embryo transf 7 (3): 146-152 1990.
  197. Forrest T.S. ELYDERANI M.K. MUILEMBERG M.I.: Cyclic endometrial change:USassesment with histologic correlation. Radiology 167: 233 1988.
  198. LI T.C. DOKERY P., ROGERS A.W. COOKE I.D.: A quantitative study of endometrial  development in the luteal phase: comparison between women with unexplained infertility and normal fertility. Br. J. Obstet.  Gynaecol. 97; 576-82, 1990.
  199. Callen P.W., De Martini W.J., Filly R.A.: The central uterine cavity echo: a useful anatomic signe in the ultrasonographic evaluation of the femal pelvis. Radiology 131, 187, 1979.
  200. Sakamoto C., Makano H.: The ecogenic endometrium and alteration during menstrual cycle- Int.  J. Gynecol.  Obstetr. 20, 255, 1982.
  201. Fugino Y, Ito F, Matuoka I, Kojima T, Koh B, Ogita S. Pulsatility index of uterine artery in pregnant and non-pregnant women. Hum Reprod. 1993 Jul;8(7):1126-8.
  202. Hoozemans DA, Schats R, Lambalk NB, Homburg R, Hompes PG. Serial uterine artery Doppler velocity parameters and human uterine receptivity in IVF/ICSI cycles. Ultrasound Obstet Gynecol. 2008 Apr;31(4):432-8.
  203.  Lazzarin N, Vaquero E, Exacoustos C, Romanini E, Amadio A, Arduini D. Midluteal phase Doppler assessment of uterine artery blood flow in nonpregnant women having a history of recurrent spontaneous abortions: correlation to different etiologies. Fertil Steril. 2007 Jun;87(6):1383-7.
  204. Steer CV, Tan SL, Mason BA, Campbell S. Midluteal-phase vaginal color Doppler assessment of uterine artery impedance in a subfertile population. Fertil Steril. 1994 Jan;61(1):53-8.
  205. Taylor KJW, Burns PN, Wells PNT, Conway DI, Hull MGR. Ultrasound Doppler flow studies of the ovarian and uterine arteries. Br J Obstet Gynaecol 1985;92:240-246.
  206. Kurjak A, Kupesic-Urek S, Schulman H, Zalud I. Transvaginal color flow Doppler in the assessment of ovarian and uterine blood flow in infertile women. Fert Steril 1991;56:870-873.
  207. Battaglia C, Larocca E, Lanzani A, Valentini M, Genazzani AR. Doppler ultrasound studies of the uterine arteries in spontaneous and IVF stimulated ovarian cycles. Gynecol Endocrinol1990;4:245-250.
  208. Lazzarin N, Vaquero E, Exacoustos C, Bertonotti E, Romanini ME, Arduini D. Low-dose aspirin and omega-3 fatty acids improve uterine artery blood flow velocity in women with recurrent miscarriage due to impaired uterine perfusion. Fertil Steril. 2009 Jul;92(1):296-300.
  209. Yan Zhang et al: Study on relationship between perifollicular blood flow and in vitro fertilization-embryo transfer. K. Nanjing Med UNiv 200;22,1:57-60

  210. Borini A, Maccolini A, Tallarini A, Bonu MA, Sciajno R, Flamigni C. Perifollicular vascularity and its relationship with oocyte maturity and IVF outcome. Ann N Y Acad Sci 2001;943:
  211. Borini A, Tallarini A, Maccolini A, Prato LD, Flamigni C. Perifollicular vascularity monitoring and scoring: a clinical tool for selecting the best oocyte. Eur J Obstet Gynecol Reprod Biol 2004;115(Suppl. 1):
  212. S Chui DK, Pugh ND, Walker SM, Gregory L, Shaw RW. Follicular vascularity-the predictive value of transvaginal power Doppler ultrasonography in an in-vitro fertilization programme: a preliminary study. Hum Reprod 1997;12(1):
  213. Bhal PS, Pugh ND, Chui DK, Gregory L, Walker SM, Shaw RW. The use of transvaginal power Doppler ultrasonography to evaluate the relationship between perifollicular vascularity and outcome in in-vitro fertilization treatment cycles. Hum Reprod 1999;14(4):
  214. Ragni G, Anselmino M, Nicolosi AE, Brambilla ME, Calanna G, Somigliana E. Follicular vascularity is not predictive of pregnancy outcome in mild controlled ovarian stimulation and IUI cycles. Hum Reprod 2007; 22(1):
  215. Neena MalhotraAnupama BahadurNeeta SinghMani Kalaivani, and Suneeta Mittal  Role of perifollicular Doppler blood flow in predicting cycle response in infertile women with genital tuberculosis undergoing in vitro fertilization/intracytoplasmic sperm injection. J Hum Reprod Sci. 2014 Jan-Mar; 7(1): 19–24.
  216. Bhal PS, Pugh ND, Chui DK, Gregory L, Walker SM, Shaw RW. The use of transvaginal power Doppler ultrasonography to evaluate the relationship between perifollicular vascularity and outcome in in-vitro fertilization treatment cycles. Hum Reprod. 1999;14:939–45.
  217. Costello MF, Shrestha SM, Sjoblom P, McNally G, Bennett MJ, Steigrad SJ, et al. Power Doppler ultrasound assessment of ovarian perifollicular blood flow in women with polycystic ovaries and normal ovaries during in vitro fertilization treatment. Fertil Steril. 2005;83:945–54.
  218. clinical IVF laboratory. Hum Reprod 1997; 12:1610-1614. 2. Coulam CB, Good C, Rinehart JS. Color Doppler indices of follicular blood flow as predictor of pregnancy after IVF and embryo transfer. Hum Reprod 1999; 14: 1979- 1982
  219. Robson SJ, Norman RJ. Power Doppler assessment of follicle vascularity at the time of oocyte retrieval in invitro fertilization cycle. Fertil Steril 2008; 90: 2179-2182
  220. Vlaisavljevic V, Reljic M, Gavric lovrec V, Zazula D, Sergent N. Measurement of perifollicular blood flow of the dominant preovulatory follicle using 3D power Doppler. Ultrasound Obstet Gyn 2003; 22: 520-526.
  221. Anonymous. Collaborative overview of randomised trials of antiplatelet therapy–I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. antiplatelet trialists’ collaboration. BMJ. 1994;308:81–106. [PMC free article] [PubMed]
  222. Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62. [PubMed]
  223. Sattler KJ, Woodrum JE, Galili O, et al. Concurrent treatment with renin-angiotensin system blockers and acetylsalicylic acid reduces nuclear factor kappaB activation and C-reactive protein expression in human carotid artery plaques. Stroke. 2005;36:14–20. [PubMed]
  224. De Caterina R, Spiecker M, Solaini G, et al. The inhibition of endothelial activation by unsaturated fatty acids. Lipids. 1999;34:S191–S194. [PubMed]
  225. Massaro M, Scoditti E, Carluccio MA, De Caterina R. Basic mechanisms behind the effects of n-3 fatty acids on cardiovascular disease. Prostaglandins Leukot Essent Fatty Acids. 2008;79:109–115. [PubMed]
  226. Peters RJ, Mehta SR, Fox KA, et al. Effects of aspirin dose when used alone or in combination with clopidogrel in patients with acute coronary syndromes: Observations from the clopidogrel in unstable angina to prevent recurrent events (CURE) study. Circulation. 2003;108:1682–1687. [PubMed]
  227. Bliden KP, Tantry US, DiChiara J, Gurbel PA. Further ex vivo evidence supporting higher aspirin dosing in patients with coronary artery disease and diabetes. Circ Cardiovasc Interv. 2011;4:118–120. [PubMed]
  228. Collins T, Cybulsky MI. NF-kappaB: Pivotal mediator or innocent bystander in atherogenesis? J Clin Invest. 2001;107:255–264. [PMC free article] [PubMed]
  229. Gilmore TD. The Rel/NF-kappaB signal transduction pathway: Introduction. Oncogene. 1999;18:6842–6844. [PubMed]
  230. Watson PD, Joy PS, Nkonde C, Hessen SE, Karalis DG. Comparison of bleeding complications with omega-3 fatty acids + aspirin + clopidogrel–versus–aspirin + clopidogrel in patients with cardiovascular disease. Am J Cardiol. 2009;104:1052–1054. [PubMed]
  231. Baigent C, Blackwell L, et al. Antithrombotic Trialists’ (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–1860. [PMC free article] [PubMed]
  232. Block RC, Dier U, Calderonartero P, et al. The effects of EPA+DHA and aspirin on inflammatory cytokines and angiogenesis factors. World J Cardiovasc Dis. 2012;2:14–19. [PMC free article] [PubMed]
  233. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol. 2006;6:111–130. [PubMed]
  234. Gilmore TD. Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 2006;25:6680–6684. [PubMed]
  235. Bodary PF, Westrick RJ, Wickenheiser KJ, Shen Y, Eitzman DT. Effect of leptin on arterial thrombosis following vascular injury in mice. JAMA. 2002;287:1706–1709. [PubMed]
  236. Slattery ML, Wolff RK, Herrick J, Caan BJ, Potter JD. Leptin and leptin receptor genotypes and colon cancer: Gene-gene and gene-lifestyle interactions. Int J Cancer. 2008;122:1611–1617. [PMC free article][PubMed]
  237. Restituto P, Colina I, Varo JJ, Varo N. Adiponectin diminishes platelet aggregation and sCD40L release. potential role in the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010;298:E1072–E1077.[PubMed]
  238. Chapkin RS, Kim W, Lupton JR, McMurray DN. Dietary docosahexaenoic and eicosapentaenoic acid: Emerging mediators of inflammation. Prostaglandins Leukot Essent Fatty Acids. 2009;81:187–191.[PMC free article] [PubMed]
  239. Herrera-Galeano JE, Becker DM, Wilson AF, et al. A novel variant in the platelet endothelial aggregation receptor-1 gene is associated with increased platelet aggregability. Arterioscler Thromb Vasc Biol. 2008;28:1484–1490. [PMC free article] [PubMed]
  240. Mathias RA, Kim Y, Sung H, et al. A combined genome-wide linkage and association approach to find susceptibility loci for platelet function phenotypes in european american and african american families with coronary artery disease. BMC Med Genomics. 2010;3:22. [PMC free article] [PubMed]
  241. Faraday N, Yanek LR, Mathias R, et al. Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1. Circulation. 2007;115:2490–2496. [PubMed]
  242. Patrono C, Garcia Rodriguez LA, Landolfi R, Baigent C. Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med. 2005;353:2373–2383. [PubMed]
  243. Chiang N, Bermudez EA, Ridker PM, Hurwitz S, Serhan CN. Aspirin triggers anti-inflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. 2004;101:15178–15183.[PMC free article] [PubMed]
  244. Arita M, Bianchini F, Aliberti J. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolving E1. J Exp Med. 2005;201:713–722. [PMC free article] [PubMed]
  245. Fredman G, Van Dyke TE, Serhan CN. Resolvin E1 regulates adenosine diphosphate activation of human platelets. Arterioscler Thromb Vasc Biol. 2010;30:2005–2013. [PMC free article] [PubMed]
  246. Dona M, Fredman G, Schwab JM, et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood. 2008;112:848–855. [PMC free article][PubMed]
  247. Block RC, Kakinami L, Jonovich M, et al. The combination of EPA+DHA and low-dose aspirin ingestion reduces platelet function acutely whereas each alone may not in healthy humans. Prostaglandins Leukot Essent Fatty Acids. 2012;87:143–151. [PMC free article] [PubMed]
  248. DiChiara J, Bliden KP, Tantry US, et al. The effect of aspirin dosing on platelet function in diabetic and nondiabetic patients: An analysis from the aspirin-induced platelet effect (ASPECT) study. Diabetes. 2007;56:3014–3019. [PubMed]
  249. Gurbel PA, Bliden KP, DiChiara J, et al. Evaluation of dose-related effects of aspirin on platelet function: Results from the aspirin-induced platelet effect (ASPECT) study. Circulation. 2007;115:3156–3164. [PubMed]
  250. American Diabetes Association. Executive summary: Standards of medical care in diabetes—2012. Diabetes Care. 2012;35:S4–S10. [PMC free article] [PubMed]
  251. Wyne KL. Free fatty acids and type 2 diabetes mellitus. Am J Med. 2003;115:29S–36S. [PubMed]
  252. Holvoet P, Kritchevsky SB, Tracy RP, et al. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes. 2004;53:1068–1073. [PubMed]
  253. Ebbesson SO, Tejero ME, Nobmann ED, et al. Fatty acid consumption and metabolic syndrome components: The GOCADAN study. J Cardiometab Syndr. 2007;2:244–249. [PubMed]
  254. Larson MK, Ashmore JH, Harris KA, et al. Effects of omega-3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects. Thromb Haemost. 2008;100:634–641. [PubMed]
  255. Bays HE. Safety considerations with omega-3 fatty acid therapy. Am J Cardiol. 2007;99:35C–43C.[PubMed]
  256. Lavie CJ, Milani RV, Mehra MR, Ventura HO. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol. 2009;54:585–594. [PubMed]
  257. Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345:494–502. [PubMed]
  258. Connolly SJ, Pogue J, et al. ACTIVE Investigators. Effect of clopidogrel added to aspirin in patients with atrial fibrillation. N Engl J Med. 2009;360:2066–2078. [PubMed]
  259. Usman MH, Notaro LA, Nagarakanti R, et al. Combination antiplatelet therapy for secondary stroke prevention: Enhanced efficacy or double trouble? Am J Cardiol. 2009;103:1107–1112. [PubMed]
  260. Grosser T, Fries S, Lawson JA, Kapoor SC, Grant GR, Fitzgerald GA. Drug resistance and pseudoresistance: An unintended consequence of enteric coating aspirin. Circulation. 2013;127:377–385.[PMC free article] [PubMed]
  261. Eikelboom JW, Hirsh J, Weitz JI, Johnston M, Yi Q, Yusuf S. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation. 2002;105:1650–1655. [PubMed]
  262. Goodman T, Ferro A, Sharma P. Pharmacogenetics of aspirin resistance: A comprehensive systematic review. Br J Clin Pharmacol. 2008;66:222–232. [PMC free article] [PubMed]
  263. Pignone M, Alberts MJ, Colwell JA, et al. Aspirin for primary prevention of cardiovascular events in people with diabetes: A position statement of the american diabetes association, a scientific statement of the american heart association, and an expert consensus document of the american college of cardiology foundation. Diabetes Care. 2010;33:1395–1402. [PMC free article] [PubMed]
  264. Krasopoulos G, Brister SJ, Beattie WS, Buchanan MR. Aspirin “resistance” and risk of cardiovascular morbidity: Systematic review and meta-analysis. BMJ. 2008;336:195–198. [PMC free article] [PubMed]
  265. Colwell JA American Diabetes Association. Aspirin therapy in diabetes. Diabetes Care. 2004;27:S72–73.[PubMed]
  266. Jackson G. Aspirin: Not currently for primary prevention in diabetes. Int J Clin Pract. 2009;63:831–832.[PubMed]
  267. US Preventive Services Task Force. Aspirin for the prevention of cardiovascular disease: US preventive services task force recommendation statement. Ann Intern Med. 2009;150:396–404. [PubMed]
  268. Campbell CL, Smyth S, Montalescot G, Steinhubl SR. Aspirin dose for the prevention of cardiovascular disease: A systematic review. JAMA. 2007;297:2018–2024. [PubMed]
  269. Anonymous. Final report on the aspirin component of the ongoing physicians’ health study, steering committee of the physicians’ health study research group. N Engl J Med. 1989;321:129–35. [PubMed]
  270. Grundy SM, Brewer HB, Jr, Cleeman JI, et al. Definition of metabolic syndrome: Report of the national heart, lung, and blood Institute/American heart association conference on scientific issues related to definition. Circulation. 2004;109:433–438. [PubMed]
  271. Ohno Y, Fujimoto Y.: Endometrial oestrogen and progesterone receptors and their relationship to sonographic appearance of the endometrium.  Hum Reprod Update. 1998 Sep-Oct; 4(5):560-4.
  272. Check JHPeymer MJairaj P.  Single daily monitoring of periovulatory estradiol, progesterone, and luteinizing sera hormone levels in natural cycles useful for timing intrauterine insemination.  Arch Androl.  1994 Mar-Apr;32(2):151-6.
  273. Ozçakir HTGöker ENTerek MCAdakan SUlukus MLevi RTavmergen E   Relationship of follicle number, serum estradiol level, and other factors to clinical pregnancy rate in gonadotropin-induced intrauterine insemination cycles. .Arch Gynecol Obstet. 2002 Jan;266(1):18-20.
  274. Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H. Predictive factors for pregnancy after intrauterine insemination (IUI): an analysis of 1038 cycles and a review of the literature.  Fertil Steril. 2010 Jan; 93(1):79-88. Epub 2008 Nov 8.
  275. Dickey, R.P, Olar, T.T, Taylor, S.N, Curole, D.N, Rye, P.H, Matulich, E.M. Relationship of follicle number, serum estradiol, and other factors to birth rate and multiparity in human menopausal gonadotropin-induced intrauterine insemination cycles. Fertil Steril. 1991;56:89–92.
  276. Martinez, A.R, Bernardus, R.E, Voorhorst, F.J, Vermeiden, J.P.W, Schoemaker, J. Pregnancy rates after timed intercourse or intrauterine insemination after human menopausal gonadotropin stimulation of normal ovulatory cycles (a controlled study) . Fertil Steril. 1991;55:258–265.
  277. Stone, B.A, Vargyas, J.M, Ringler, G.E, Stein, A.L, Marrs, R.P. Determinants of the outcome of intrauterine insemination (analysis of outcomes of 9963 consecutive cycles) . Am J Obstet Gynecol. 1999;180:1522–1534.
  278. Haning, R.V, Boehnlein, L.M, Carlson, I.H, Kuzma, D.L, Zweibel, W.J. Diagnosis-specific serum 17B-estradiol (E2) upper limits for treatment with menotropins using a 125I direct E2 assay. Fertil Steril. 1984;42:882–889
  279. Bo HuangXinling RenLi WuLixia ZhuBei XuYufeng LiJihui Ai, and Lei Jin Elevated Progesterone Levels on the Day of Oocyte Maturation May Affect Top Quality Embryo IVF Cycles.  PLoS One. 2016; 11(1): e0145895. Published online 2016 Jan 8. doi:  10.1371/journal.pone.0145895
  280. Al-Azemi M, Kyrou D, Kolibianakis EM, Humaidan P, Van Vaerenbergh I, Devroey P, et al. Elevated progesterone during ovarian stimulation for IVF. Reprod Biomed Online. 2012;24(4):381–8. Epub 2012/03/02.
  281. Edelstein MC, Seltman HJ, Cox BJ, Robinson SM, Shaw RA, Muasher SJ. Progesterone levels on the day of human chorionic gonadotropin administration in cycles with gonadotropin-releasing hormone agonist suppression are not predictive of pregnancy outcome. Fertil Steril. 1990;54(5):853–7.
  282. Venetis CA, Kolibianakis EM, Papanikolaou E, Bontis J, Devroey P, Tarlatzis BC. Is progesterone elevation on the day of human chorionic gonadotrophin administration associated with the probability of pregnancy in in vitro fertilization? A systematic review and meta-analysis. Human Reproduction Update. 2007;13(4):343–55.
  283. Kolibianakis EM, Venetis CA, Bontis J, Tarlatzis BC. Significantly Lower Pregnancy Rates in the Presence of Progesterone Elevation in Patients Treated with GnRH Antagonists and Gonadotrophins: A Systematic Review and Meta-Analysis. Curr Pharm Biotechno. 2012;13(3):464–70.
  284. Ochsenkun R, Arzberger A, von Schonfeldt V, Gallwas J, Rogenhofer N, Crispin A, et al. Subtle progesterone rise on the day of human chorionic gonadotropin administration is associated with lower live birth rates in women undergoing assisted reproductive technology: a retrospective study with 2,555 fresh embryo transfers. Fertility and Sterility. 2012;98(2):347–54.
  285. Yding Andersen C, Bungum L, Nyboe Andersen A, Humaidan P. Preovulatory progesterone concentration associates significantly to follicle number and LH concentration but not to pregnancy rate. Reproductive biomedicine online. 2011;23(2):187–95
  286. Labarta E, Martinez-Conejero JA, Alama P, Horcajadas JA, Pellicer A, Simon C, et al. Endometrial Receptivity Is Affected in Women With High Circulating Progesterone Levels at the End of the Follicular Phase: A Functional Genomics Analysis EDITORIAL COMMENT. Obstet Gynecol Surv. 2011;66(12):763–4.
  287. Kilicdag EB, Haydardedeoglu B, Cok T, Hacivelioglu SO, Bagis T. Premature progesterone elevation impairs implantation and live birth rates in GnRH-agonist IVF/ICSI cycles. Arch Gynecol Obstet. 2010;281(4):747–52.
  288. Griesinger G, Mannaerts B, Andersen CY, Witjes H, Kolibianakis EM, Gordon K. Progesterone elevation does not compromise pregnancy rates in high responders: a pooled analysis of in vitro fertilization patients treated with recombinant follicle-stimulating hormone/gonadotropin-releasing hormone antagonist in six trials. Fertility and Sterility. 2013;100(6):1622–8.e3.
  289. Liu L, Zhou F, Lin XN, Li TC, Tong XM, Zhu HY, et al. Recurrent IVF failure is associated with elevated progesterone on the day of hCG administration. Eur J Obstet Gyn R B. 2013;171(1):78–83.
  290. Fair T, Lonergan P. The role of progesterone in oocyte acquisition of developmental competence. Reprod Domest Anim. 2012;47 Suppl 4:142–7. Epub 2012/08/01.
  291. Mozdarani H, Meybodi AM, Karimi H. Impact of pericentric inversion of Chromosome 9 [inv (9) (p11q12)] on infertility. Indian Journal of Human Genetics. 2008. 13:26-29.
  292. Ceylan, G., Ceylan, C., Yuce, H. (2008) A rare seen case with homozygosity for pericentric inversion of chromosome 9 and primary infertility. Am. J. Case Rep. 9, 385-388.
  293. Boué, J., Taillemite, J. L., Hazael-Massieux, P., Léonard, C., Boué, A. (1975) Association of pericentric inversion of chromosome 9 and reproductive failure in ten unrelated families. Humangenetik 30, 217-224
  294. Madon, P. F., Athalye, A. S., Parikh, F. R. (2005) Polymorphic variants on chromosomes probably play a significant role in infertility. Reprod. Biomed. Online 11, 726-732
  295. Madon, P. F., Athalye, A. S., Parikh, F. R. (2005) Polymorphic variants on chromosomes probably play a significant role in infertility. Reprod. Biomed. Online 11, 726-732
  296. Parazzini F et al. Università di Milano: “L’epidemiologia dell’aborto spontaneo”. SIGO, 2002.
  297.  Sasiadek M, Haus O, Lukasik-Majchrowska M, Slezak Paprocka-Borowicz M, Busza H, Plewa R, et al. Cytogenetic analysis in  couples with spontaneous abortions. Ginekol Pol 1997;68:248-52.
  298.  Rocco L., Bencivenga S., Valentino V.I., Mottola F., Galileo C., Fasano R.: “Gli eteromorfismi cromosomici: l’inversione pericentrica del cromosoma 9″.  Seconda Università degli Studi di Napoli. Giornate Scientifiche di Ateneo 2011, 28 giugno 2011
  299. Dickey, R.P, Taylor, S.N, Curole, D.N, Rye, P.H, Lu, P.Y. Ovulation induction and IUI in older women.Hum Reprod. 1997;11:199.
  300. Harris, I.; Missmer, S.; Hornstein, M. (2010). “Poor success of gonadotropin-induced controlled ovarian hyperstimulation and intrauterine insemination for older women”. Fertility and Sterility94 (1): 144–148. doi:10.1016/j.fertnstert.2009.02.040PMID 19394605.
  301. Klein NA, Harper AJ,  Houmard BS, Sluss PM,  Soules MR: Is the short follicular phase in older women secondary to advanced or accelerated dominant follicle development? J Clin Endocrinol Metab 2002;87:5746-5750
  302. DeWaay DJ, Syrop CH, Nygaard IE, Davis WA, Van Voorhis BJ. Natural history of uterine polyps and leiomyoma. Obstet Gynecol 2002;100(1):3-7.
  303. Gian Carlo Di Renzo, Trattato di ginecologia e ostetricia, Roma, Verduci Editore, 2009, ISBN 978-88-7620-812-6.
  304. Robbins e Cotran, Le basi patologiche delle malattie, 7ª ed., Torino – Milano, Elsevier Masson, 2008, ISBN 978-88-85675-53-7.
  305. Darwish A.M.  · Youssef A.A. Screening Sonohysterography in Infertility Gynecol Obstet Invest 1999;48:43–47
  306. Le Lannou D., Is the limitation to 6 cycles of insemination with donor sperm justified?], in Gynecol Obstet Fertil., febbraio 2002.
  307. Haagen EC, Hermens RP, Nelen WL,  Braat DD, Grol RP, Kremer JA: Subfertility guidelines in Europe: the quantity and quality of intrauterine insemination guidelines. Hum Reprod 2006;21:2103-2109
  308. Custers IM,  Steures P, Hompes P,  Flierman P,  van Kasteren Y, van Dop PA, van der Veen F, Mol BW: Intrauterine insemination: how many cycles should we perform? Hum Reprod 2008;23: 885-888.
  309. Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H (November 2008). “Predictive factors for pregnancy after intrauterine insemination (IUI): An analysis of 1038 cycles and a review of the literature”. Fertil. Steril93 (1): 79–88.
  310. Maes D, Nauwynck H, Rijsselaere T, Mateusen B, Vyt P, de Kruif A, Van Soom A., Diseases in swine transmitted by artificial insemination: An overview., in Theriogenology., luglio 2008.
  311. Antsaklis J et al: “Prenatal diagnosis of fetal primary Cytomegalovirus infection”. Br J Obst Gyn 2000;107,1:64-88.
  312. Yang YS et al: “Cytomegalovirus infection and viral shedding in the genital tract of infertile couples”. J Med Virol 1995;45:179-182
  313. Volpicelli T, Volpicelli V., Soscia E, Borruto Caracciolo G, Battista L, D’Antò V, De Falco CL, Tolino A: “Infezione da Cytomegalovirus in donatori di seme”. Giornale It Ostetr e Ginecol 2000;9.
  314. Araneta MR1, Mascola LEller AO’Neil LGinsberg MMBursaw MMarik JFriedman SSims CARekart ML, et al. HIV transmission through donor artificial insemination.   JAMA. 1995 Mar 15;273(11):854-8.
  315. Wortley PM, Hammett TA, Fleming PL. Donor insemination and human immunodeficiency virus transmission. Obstet Gynecol. 1998 Apr; 91(4):515-8.
  316. HIV serology in artificially inseminated lesbians.
    Eskenazi B, Pies C, Newstetter A, Shepard C, Pearson K.J Acquir Immune Defic Syndr. 1989; 2(2):187-93.
  317. Repro-sexual intersections: sperm donation, HIV prevention and the public interest in semen.
Pralat R.Reprod Biomed Online. 2015 Mar; 30(3):211-9. Epub 2014 Dec 2.
  • Savasi V, Ferrazzi E, Lanzani C, Oneta M, Parrilla B, Persico T – Safety of sperm washing and ART outcome in 741 HIV-1-serodiscordant couples www.ncbi.nlm.nih.gov/pubmed/17107974
  • A.P.Osemwenkha, K.O.Ibadin, O.I.Enabulele, I.N.Ibeh – Sero prevalence of Hepatitis B virus among infertile women recruited for Assisted Reproduction Technology (ART). web.usm.my/mjm/issues/vol7no4/Short%202.pdf
  • P. Honeck, M. Weigel, S.T. Kwon, P. Alken and S. Bross – Assisted procreation in cases of hepatitis B, hepatitis C or human immunodeficiency virus infection of the male partner humrep.oxfordjournals.org/content/21/5/1117.full
  • Anderson, D.J. (1999) Assisted reproduction for couples infected with the human immunodeficiency virus type 1. Fertil. Steril. 72,592–594
  • Bongin, A., Durand-Reville, M., Loizeau, S. et al. (2000) La femme VIH seropositive état des lieux en France. Communication au Congrès Le désir d’enfant chez les couples VIH sérodifférents Toulouse, Mai, 35–36
  • Connor, E.M., Sperling, R., Gelber, R. et al. (1994) Reduction of maternal-infant transmission of human immunodeficiency virus tyupe 1 with Zidovudine treatment.  N. Engl. J. Med. 331, 1173–1180
  • Lesourd, F., Izopet, J., Mervan, C. et al. (2000) Transmissions of hepatitis C virus during the ancillary procedures for assisted conception. Hum. Reprod. 15, 1083–1085
  • Benjamin, I., Fernández, G., Figueira, J.V., Parpacén, L., Urbina, M.T., and Medina, R. Zika virus detected in amniotic fluid and umbilical cord blood in an IVF-conceived pregnancy in Venezuela.Fertil Steril. 2017; 107: 1319–1322
  • Centers for Disease Control and Prevention. Preconception counseling for women and men living in areas with ongoing spread of Zika virus who are interested in conceiving. Atlanta: CDC, US Department of Health and Human Services. 2016. Available at: https://www.cdc.gov/zika/pdfs/preconception-counseling.pdf. Accessed April 3, 2017.
  • Reynolds, M.R., Jones, A.M., and Peterson, E.E. Vital signs: update on Zika virus-associated birth defects and evaluation of all U.S. infants with congenital Zika virus exposure—U.S. Zika Pregnancy Registry, 2016. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep. 2017; 66: 366–373
  • World Health Organization. Situation report: Zika virus, microcephaly, Guillain-Barre syndrome. 2017. Available at: http://apps.who.int/iris/bitstream/10665/254714/1/zikasitrep10Mar17-eng.pdf. Accessed April 4, 2017.
  • American Society for Reproductive Medicine. Guidance for providers caring for women and men of reproductive age with possible Zika virus exposure. ASRM guidelines document. Available at: http://www.asrm.org/globalassets/asrm/asrm-content/news-and-publications/practice-guidelines/for-nonmembers/asrm_zikaguidance_09-13-16.pdf. Accessed April 4, 2017.
  • Chantel I. Washington CrossJames H. Segars,   Preconception assisted reproductive technology counseling in the age of Zika Fertl Steril  June 2017 Volume 107, Issue 6, Pages 1296–1297
  • Goverde AJ et al: Further considerations on natural or mild hyperstimulation cycles for intrauterine insemination treatment: effects on pregnancy and multiple pregnancy rates. Hum Reprod 2005;20: 3141-3146
  • Ragni G, Caliari I, Nicolosi AE, Arnoldi M,  Somigliana E,  Crosignani PG: Preventing higher order multiple pregnancies during controlled ovarian hyperstimulation and intrauterine insemination: 3 years’ experience using low dose recombinant follicle-stimulating hormone and gonadotropin-releasing hormone antagonist.  Fertil Steril  2006;85:619-624
  • Gulumser C,  Narvekar N, Conway G, Saridogan E, Davies M: Limiting multiple pregnancies in 4242 cycles of IUI: increase in follicle numbers increases multiple pregnancy but not clinical pregnancy rate! Hum Reprod 2008;23,(s1):i63
  • Gleicher N, Oleske DM,  Tur-Kaspa I,  Vidali A, Karande  V: Reducing the risk of higher order multiple pregnancy after ovarian stimulation with gonadotropins. N Engl J Med 2000;343:2-7
  • Fauser BCJM, Devroey P, Macklon NS: Multiple birth resulting from ovarian stimulation for subfertility treatment. Lancet 2005;365.1807-1816
  • Dickey RP, Taylor SN,  Lu PY, Sartor BM, Rye PH, Pyrzak R: Risk factors for higher order multiple pregnancy and multiple birth after controlled ovarian hyperstimulation; results of 4,062 IUI cycles. Fertil Steril 2005;671-683
  • Dickey RP. Strategies to reduce multiple pregnancies due to ovulation stimulation. Fertil Steril 2009;9:1-17
  • Goverde AJ,  Lambalk CB, McDonnell J,  Schats R,  Homburg R,  Vermeiden JPW: Further consideration on natural or mild hyperstimulation cycles for intrauterine insemination treatment: effects on pregnancy and multiple pregnancy rates. Hum Reprod 2005;20:3141-3146
  • Haagen  EC, Hermens RP, Nelen WL,  Braat DD,  Kremer JA, Grol RP: Subfertile couples’ negative experiences with intrauterine insemination care. Fertil Steril  2008;89:809-816
  • Ghesquiere SL, Castelain EG,  Spiessens C,  Meuleman CL,  D’Hooghe TM: Relationship between follicle number and (multiple) live birth rate after controlled ovarian hyperstimulation and intrauterine insemination. Am J Obstet Gynecol 2007;197:589e1-595
  • Stone SC, Schimberni M, Schuster PA, Werlin LB, Weathersbee P. Incidence of multiple gestations in the presence of two or more mature follicles in the conception cycle. Fertil Steril 1987;48:503– 504.
  • The ESHRE Capri Workshop Group. Multiple gestation pregnancy. Hum Reprod 2000;15:1856– 1864.
  • Valbuena D, Simon C, Romero JL, Remohi J, Pellicer A. Factors responsible for multiple pregnancies after ovarian stimulation and intrauterine insemination with gonadotropins. J Assist Reprod Genet 1996;13:663–668.
  •  ^ Alnot MO., 1992 results of sperm donor procreation. French Federation of CECOS and private cooperative centers, in Contracept Fertil Sex., vol. 21, maggio 1993, pp. 371-373.
  •  Sher G, Knutzen VK, Stratton CJ, Montakhab MM, Allenson SG.   In vitro sperm capacitation and transcervical intrauterine insemination for the treatment of refractory infertility: phase I.  Fertil Steril. 1984 Feb;41(2):260-4.
  • Jameel T., Sperm swim-up: a simple and effective technique of semen processing for intrauterine insemination, in J Pak Med Assoc., vol. 58, febbraio 2008, pp. 71-74.
  • Pardo M, Bancells N.   Artificial insemination with husband’s sperm (AIH): techniques for sperm selection. Arch Androl. 1989;22(1):15-27.
  • Watanabe N, Lin TY, Terao T.   [The study of the controlled ovarian stimulation and sperm capacitated AIH for the treatment of refractory infertility]. Nihon Sanka Fujinka Gakkai Zasshi. 1987 Oct;39(10):1761-8.
  • Boomsma CM, Heineman MJ,  Cohlen BJ, Farquhar C: Semen preparation techniques for intrauterine insemination (Review). Cochrane Database Syst Rev 2007 Art No.: CD004507,
  • Centola, G.M., Mattox, J.H., and Raubertas, R.F. Pregnancy rates after double versus single insemination with frozen donor semen. Fertil Steril. 1990; 54: 1089–1092
  • Matorras R, Gorostiaga A, Diez J, Corcóstegui B, Pijoan JI, Ramón O, Rodriguez-Escudero FJ. Intrauterine insemination with frozen sperm increases pregnancy rates in donor insemination cycles under gonadotropin stimulation. Fertil Steril. 1996 Mar; 65(3):620-5.
  • Intrauterine insemination-ready versus conventional semen cryopreservation for donor insemination: a comparison of retrospective results and a prospective, randomized trial. Wolf DP, Patton PE, Burry KA, Kaplan PF.Fertil Steril. 2001 Jul; 76(1):181-5.
  • Casadei L, Zamaro V, Calcagni M, Ticconi C, Dorrucci M, Piccione E. Omologous intrauterine insemination in controlled ovarian hyperstimulation cycles: a comparison among three different regimens. Eur J Obstet Gynecol Reprod Biol. 2006 Dec; 129(2):155-61. Epub 2006 May 9.
  • Roudebush WEToledo AAKort HIMitchell-Leef DElsner CWMassey JB.  Platelet-activating factor significantly enhances intrauterine insemination pregnancy rates in non-male factor infertility. Fertil Steril. 2004 Jul;82(1):52-6.
  • Effect of sperm treatment with exogenous platelet-activating factor on the outcome of intrauterine insemination. Grigoriou O, Makrakis E, Konidaris S, Hassiakos D, Papadias K, Baka S, Creatsas G.Fertil Steril. 2005 Mar; 83(3):618-21.
  • Treatment of sperm with platelet-activating factor does not improve intrauterine insemination outcome in unselected cases of mild male factor infertility: a prospective double-blind randomized crossover study.
    Baka S, Grigoriou O, Hassiakos D, Konidaris S, Papadias K, Makrakis E.Urology. 2009 Nov; 74(5):1025-8. Epub 2009 Aug 29.
  • Roudebush WE  Role of platelet-activating factor in reproduction: sperm function.  Asian J Androl. 2001 Jun;3(2):81-5.
  • Seminal platelet-activating factor. Roudebush WE.Semin Thromb Hemost. 2007 Feb; 33(1):69-74.
  • Essential role of platelet-activating factor in male reproduction: a review. Ali A, Virirak Kattygnarath T, Benkhalifa M, Miron P.Reprod Biomed Online. 2007 Feb; 14(2):250-5.
  • [Effect of platelet-activating factor on sperm function]. Huang QY, Li MJ.Zhonghua Nan Ke Xue. 2007 Jun; 13(6):538-41.
  • The significance of platelet-activating factor and fertility in the male primate: a review. Roudebush WE, Massey JB, Elsner CW, Shapiro DB, Mitchell-Leef D, Kort HI.J Med Primatol. 2005 Feb; 34(1):20-4.
  • Mann, G.E., Lamming, G.E. The influence of progesterone during early pregnancy in cattle.Reprod Domest Anim. 1999;34:269–274.
  • Mann, G.E., Fray, M.D., Lamming, G.E. Effects of time of progesterone supplementation on embryo development and interferon-tau production in the cow. Vet J. 2006;171:500–503.
  • Parr, M.H., Crowe, M.A., Lonergan, P., Evans, A.C.O., Rizos, D., Diskin, M.G. Effect of exogenous progesterone supplementation in the early luteal phase post-insemination on pregnancy per artificial insemination in Holstein-Friesian cows. Anim Reprod Sci. 2014;150:7–14.
  • Yanushpolsky E, Hurwitz S, Greenberg L, Racowsky C, Hornstein M. Crinone vaginal gel is equally effective and better tolerated than intramuscular progesterone for luteal phase support in in vitro fertilization-embryo transfer cycles: a prospective randomized study.   Fertil Steril. 2010 Dec;94(7):2596-9. Epub 2010 Mar 27.
  • Tomic V, Tomic J, Klaic DZ. Oral micronized progesterone combined with vaginal progesterone gel for luteal support. Gynecol Endocrinol. 2011 Apr 19.

  • Ludwig MDiedrich KEvaluation of an optimal luteal phase support protocol in IVF. Acta Obstet Gynecol Scand. 2001 May;80(5):452-66.

  • Pritts EA, Atwood AK. Luteal phase support in infertility treatment: a meta-analysis of the randomized trials. Hum Reprod. 2002 Sep; 17(9):2287-99.

  • Daya S, Gunby J. Luteal phase support in assisted reproduction cycles. Cochrane Database Syst Rev. 2004; (3):CD004830.

  • Nulsen J, Wheeler C, Ausmanas M, Blasco L: Cervical mucus changes in relationship to urinary luteinizing hormone. Fertil Steril 1987;48:783-786

  • Carroll, N. and Palmer, J.R. A comparison of intrauterine verses intracervical insemination in fertile single women. Fertil Steril. 2001; 75: 656–660

  • Besselink DH, Farquhar C, Kremer JAM, Marjoribanks J, O’Brien P: Cervical insemination versus intra-uterine insemination of donor sperm for subfertility (Review). Cochrane Database Syst Rev 2008. Art No.: CD00317, doi:10.1002./14651858.CD00317.pub3

  • Carroll N, Palmer JR., A comparison of intrauterine versus intracervical insemination in fertile single women, in Fertil Steril., vol. 75, aprile 2001, pp. 656-660.

  • De Lauretis L, Ragni G., Le inseminazione sopracervicali: stato dell’arte, in CIC Edizioni Internazionali, 1994.

  • Hurd WW, Randolph JF, Ansbacher R, Menge AC, Ohl DA, Brown AN (February 1993). “Comparison of intracervical, intrauterine, and intratubal techniques for donor insemination”. Fertil. Steril59 (2): 339–42.

  • Cantineau AE, Heineman MJ, Al-Inany H, Cohlen B Intrauterine insemination versus Fallopian tube sperm perfusion in non-tubal subfertility: a systematic review based on a Cochrane review. J.Hum Reprod. 2004 Dec; 19(12):2721-9.

  • Bhattacharya S, et al. (2010). Female infertility, search date October 2009. Online version of BMJ Clinical Evidence: http://www.clinicalevidence.com.

  • Fritz MA, Speroff L (2011). Male infertility. In Clinical Gynecologic Endocrinology and Infertility, 8th ed., pp. 1249-1292. Philadelphia: Lippincott Williams and Wilkins.

  • American Society for Reproductive Medicine. (2012). Intrauterine insemination (IU).

  • Aboulghar, M., Baird, D. T., Collins, J., Evers, J. L. H., Fauser, B. C. J. M., Lambalk, C. B., … Van Steirteghem, A. (2009). Intrauterine insemination. Human Reproduction Update15(3), 265-277. DOI: 10.1093/humupd/dmp003

  • Linda M.Chaffkin, John C.Nulsen, Anthony A.Luciano, Deborah A.Metzger A comparative analysis of the cycle fecundity rates associated with combined human menopausal gonadotropin (hMG) and intrauterine insemination (IUI) versus either hMG or IUI alone. Fertil Steril  1991;55,2:252-257

  • James D.M. Nicopoullos rt al: The effect of human immunodeficiency virus on sperm parameters and the outcome of intrauterine insemination following sperm washing.  Hum Reprod (2004) 19 (10): 2289-2297.

  •  Cimino, C.; Guastella, G.; Comparetto, G.; Gullo, D.; Perino, A.; Benigno, M.; Barba, G.; Cittadini, E. (1988). “Direct intraperitoneal insemination (DIPI) for the treatment of refractory infertility unrelated to female organic pelvic disease”. Acta Europaea fertilitatis19 (2): 61–68. PMID 3223194.

  • Anselmo J, Gutiérrez A, Canales S. [Direct intraperitoneal insemination. Authors' experience]. Rev Chil Obstet Ginecol. 1991; 56(1):16-9.

  • Direct intraperitoneal insemination and controlled ovarian hyperstimulation in subfertile couples. Ben Rhouma K, Ben Miled E, Ben Marzouk A, Rihani M, Bakir M.J Assist Reprod Genet. 1994 Apr; 11(4):189-92.

  • G S Shekhawat, MD (2012). “Intrauterine insemination versus Fallopian tube sperm perfusion in non-tubal infertility”Internet Medical Journal.

  • G S Shekhawat, MD (2012). “Intrauterine insemination versus Fallopian tube sperm perfusion in non-tubal infertility”Internet Medical Journal.

  • Kahn JA, Von During V,  Sunde A, Sordal T, Molne K: Fallopian tube sperm perfusion: first clinical experience. Hum Reprod 1992;7/suppl 1)19-24

  • Kahn JA,  von Düring V, Sunde A, Molne K: Fallopian tube sperm perfusion used in a donor insemination programme. Hum Reprod 1992;7:806-812

  • Trout S.W. Fallopian tube sperm perfusion versus intrauterine insemination: a randomized controlled trial and meta-analysis of the literature. Fertil Steril. 1999;71(5):881–885

  • Ng E.H.Y., Makkar G. A randomized comparison of three insemination methods in an artificial insemination program using husbands’ semen. J Reprod Med. 2003;48(7):542–546.

  • Mamas L. Comparison of fallopian tube sperm perfusion and intrauterine tuboperitoneal insemination: a prospective randomized study. Fertil Steril. 2006;85(3):735–740.

  • Noci I., Dabizzi S., Evangelisti P. Evaluation of clinical efficacy of three different insemination Techniques in couple infertility. Minerva Ginecol. 2007;59(1):11–18.

  •  Ricci G., Nucera G., Pozzob A simple method for fallopian tube sperm perfusion using a blocking device in the treatment of unexplained infertility. Fertil Steril. 2001;7(suppl 1):1242–1248.

  • Biacchiardi C.P., Revelli A., Gennarelli G. Fallopian tube sperm perfusion versus intrauterine insemination in unexplained infertility: a randomized, prospective, crossover trial. Fertil Steril. 2004;81(2):448–451.

  • Elhelw B., Matar H., Soliman E.M. A randomized prospective comparison between intrauterine insemination and two methods of fallopian tube sperm perfusion. Middle East Fertil Soc J. 2000;5(1):83–84.

  • eldeen Hassan Maher Shams. Fallopian tube sperm perfusion in treatment of nontubal subfertility: is it crucial step prior to ART? ISRN Obstet Gynecol. 2011:160–167. [PMC free article] [PubMed]

Endocrinologia, PMA

Anovulazione cronica

Classificazione eziologica dell’anovulazione cronica: 

  1. Ipotalamica
  2. Ipofisaria
  3. Feed-back improprio
  4. Deficit dei recettori gonadotropinici

1. ANOVULAZIONE CRONICA IPOTALAMICA: disfunzione della secrezione pulsatile di GnRH

1a) Cause congenite:

1b) Cause acquisite:

  • tumori ipotalamici
  • traumi cranici
  • irradiazione del cranio

1c) Cause funzionali:

  • psicogene,
  • nutrizionali
  • da esercizio fisico

2. ANOVULAZIONE CRONICA DA CAUSE IPOFISARIE: Difetti o disfunzioni della sintesi delle gonadotropine

  • tumori,
  • adenomi,
  • apoplessia ipofisaria post partum (S. di Sheehan)
  • sindrome della sella vuota

3. ANOVULAZIONE CRONICA DA FEED-BACK IMPROPRIO

  • Distiroidismi,
  • Sindrome di Cushing,
  • tumori ovarici e surrenalici ormono secernenti,
  • eccessiva produzione extraovarica di estrogeni,
  • aumento della funzione androgenica surrenalica od ovarica.

INDUZIONE DELL’OVULAZIONE L’induzione dell’ovulazione trova, principalmente, indicazione in donne infertili con oligomenorrea o amenorrea e senza insufficienza ovarica. Durante un ciclo ovulatorio le probabilità di un concepimento dopo un rapporto sessuale a metà ciclo sono di circa il 22%.Le donne oligomenorroiche, che desiderino una gravidanza, dovrebbero essere trattate, poichè i farmaci aumentano la frequenza delle ovulazioni e cosa più importante provocano l’ovulazione in un periodo prevedibile, facilitando perciò i rapporti mirati o l’inseminazione. Un ciclo viene definito ovulatorio, quando una ecografia pelvica dimostra la scomparsa di un follicolo di grandi dimensioni, seguito da un rialzo della temperatura basale di almeno dieci giorni. La disfunzione ovulatoria rappresenta il 35% delle cause diagnosticate di sterilità femminile.

La valutazione iniziale nelle donne anovulatorie comprende una anamnesi accurata, un esame pelvico, un esame delle mammelle, i dosaggi ormonali: TSH, FSH, LH, PRL, SHGB, eseguiti al 3°giorno del ciclo, lo spermiogramma.

I farmaci impiegati nel trattamento dell’anovulazione sono: CLOMIFENE CITRATO BROMOCRIPTINA, CABERGOLINA, HMG (rapporto FSH:LH=1), FSH UMANO MENOPAUSALE (FSH: LH=20), FSH UMANO ALTAMENTE PURIFICATO (1:60), FSH ricombinante (FSH: LH=1000), GnRH.

Anche le procedure chirurgiche sono attualmente riutilizzate in determinati casi.

Le controindicazioni alla terapia farmacologica per l’induzione dell’ovulazione comprendono: la gravidanza, le allergie ai farmaci, la presenza di cisti ovariche.

CLOMIFENE CITRATO Il citrato di clomifene è un estrogeno non steroideo di sintesi, che si lega ai recettori specifici per gli estrogeni nei diversi tessuti, in particolare a livello dell’ipotalamo, che non percepisce più la reale concentrazione degli estrogeni circolanti. Il blocco del feed-back determina una stimolazione della secrezione di GnRH e delle gonadotropine. La sua emivita è compresa fra 5 e 7 giorni. Ha un effetto antiestrogenico che si manifesta prevalentemente a livello del muco cervicale e dell’endometrio.

INDICAZIONI: DEFICIT DELLA FASE LUTEALE, OLIGOMENORREA, AMENORREA SECONDARIA CON NORMALI LIVELLI DI ESTRADIOLO PER LA FASE FOLLICOLOLARE DEL CICLO E CON SANGUINAMENTO DA SOSPENSIONE INDOTTO DAL PROGESTERONE.

REGIME TERAPEUTICO: Si somministra una dose di 50 mg per 5 giorni, iniziando fra il 2° ed il 5° giorno del ciclo. In caso di insuccesso si può aumentare la dose fino a 250 mg die. L’ovulazione si verifica di solito dopo una settimana dall’ultima dose di clomifene anche se in certi casi può variare fra i 3 giorni e i 12 giorni.

MONITORAGGIO: Il monitoraggio dell’ovulazione può essere effettuato in vari modi: con il dosaggio del livello plasmatico dell’LH (debbono passare 3 giorni dall’ultima dose di clomifene), con la ecografia trans-vaginale (il follicolo più grande equivale o eccede i 20 mm di diametro) con il cervical score (deve essere di 8 o superiore), con il dosaggio dell’estradiolo (200-300 pg/ml per 1 solo follicolo >20 mm a cui si aggiungono 100 pg/ml circa per ogni follicolo >16 mm). Il valore maggiore spetta agli ultrasuoni. Identificato il giorno ideale si somministra l’hCG.

EFFETTI COLLATERALI Sono rappresentati da: vampate di calore, cefalea, mastodinia, tensione addominale, disturbi visivi, disturbi dell’umore.

BROMOCRIPTINA-CABERGOLINA La bromocriptina è un derivato dell’ergotina agonista dei recettori D2 ed antagonista dei recettori D1. Ha una emivita di poche ore. La cabergolina è un derivato ergolinico con alta affinità e selettività per i recettori D2. L’effetto farmacologico persiste per oltre 7 giorni. INDICAZIONI. ANOVULAZIONE CRONICA NELLE SINDROMI IPERPROLATTINEMICHE SIA FUNZIONALI CHE TUMORALI. REGIME TERAPEUTICO La bromocriptina è somministrata in due o tre dosi giornaliere con dosaggio totale di 2,5-15mg. La cabergolina è meglio tollerata e la dose terapeutica è di 0,25-2 mg alla settimana. MONITORAGGIO Controllo periodico della prolattina, per stabilire il dosaggio minimo efficace di questi farmaci, mentre per il monitoraggio dell’ovulazione si utilizzano gli stessi metodi del clomifene citrato, che può d’altronde essere associato nelle iperprolattinemie normoestrogeniche. Gli effetti collaterali di questi farmaci dopaminergici sono rappresentati da: nausea, vomito, ipotensione, cefalea, crampi muscolari, stipsi, secchezza alle fauci, sonnolenza.

GnRH PULSATILE Il GnRH è un decapeptide ipotalamico secreto con modalità pulsatile e con frequenza ed ampiezza variabili secondo la fase del ciclo mestruale dai nuclei sovraottico e paraventricolare ipotalamici. Scoperto nel 1971 è stata poi sintetizzato in laboratorio ed utilizzato nell’induzione dell’ovulazione.

INDICAZIONI ANOVULAZIONE CRONICA IPOTALAMICA

REGIME TERAPEUTICO  La somministrazione avviene mediante un microiniettore computerizzato portatile, per via endovenosa o sottocutanea, con modalità pulsatile a dose e freqeuenza prestabilite. Le dosi variano da 1 a 30 microgrammi per bolo con una frequenza di somministrazione fra i 60 ed i 180 minuti. La somministrazione va continuata fino alla comparsa della mestruazione o alla positivizzazione della b-HCG. In alternativa la terapia può essere sospesa dopo l’ovulazione, ma si deve supportare la fase luteale con progesterone o con hCG (2000 U.I) ogni 3 giorni. Deve essere tenuto presente il rischio infettivo legato al posizionamento del catetere. MONITORAGGIO Controlli ecografici seriati e grafico della temperatura basale. RISULTATI GONADOTROPINE Le gonadotropine sono glicoproteine costituite principalmente da carboidrati ed acido sialico. I preparati farmacologici, attualmente in uso, presenatano diverse concentrazioni di FSH e di LH, come precedentemente descritto. INDICAZIONI ANOVULAZIONE CRONICA IPOFISARIA, FALLIMENTO DEI FARMACI DI PRIMA PREFERENZA. REGIME TERAPEUTICO Il razionale dell’uso delle gonadotropine è di ricreare i meccanismi, che portano alla crescita follicolare singola. L’induzione della monoovulazione con gonadotopine può essere raggiunta attraverso i protocolli definiti a basse dosi. Lo scopo è di mantenere lo sviluppo follicolare senza oltrepassare la necessità di soglia dell’ovaio. REGIME STEP-UP: il 2°-3° giorno di un ciclo spontaneo o indotto, si somministrano 75UI di FSH o di hMG. Tale dosaggio è mantenuto per almeno 14 giorni, poi la dose viene incrementata di 37,5 UI alla settimana per un massimo di 225UI. REGIME STEP DOWN: il 2°-3° giorno si somministrano 150UI di FSH o di hMG, fino alla comparsa di un follicolo di 10 mm.Poi la dose è ridotta a113 UI e poi a 75UI fino alla somministrazione dell’hCG. MONITORAGGIO Dosaggio ormonale rapido del 17bestradiolo e valutazione ecografica del numero e diametro follicolare, iniziando il 5°-6° giorno di terapia, quindi si eseguono 31 controlli ogni due giorni finchè il follicolo non raggiunge i 14 mm, poi controlli giornalieri finchè il follicolo non raggiunge i 18 mm. L’ovulazione viene allora indotta con 5000-10000 UI di hCG. Si consigliano rapporti mirati nei tre giorni seguenti oppure si può, in presenza di alterazioni del liquido seminale programmare una inseminazione intrauterina. RISULTATI L’efficacia della terapia di induzione dell’ovulazione è elevata con indici di gravidanza del 58% a sei mesi e del 77% a dodici mesi.

TERAPIA CHIRURGICA INDICAZIONI POLICISTOSI OVARICA

TECNICA RESEZIONE A CUNEO, ELETTROCOGULAZIONE, VAPORIZZAZIONE LASER, ASPIRAZIONE TRANSVAGINALE

4. ANOVULAZIONE DA DEFICIT DEI RECETTORI DELLE GONADOTROPINE

Endocrinologia, PMA

Ovulazione

OVULAZIONE:

L’ovulazione è un fenomeno che prevede la deiscenza dell’ovocita dal suo follicolo sotto l’influenza di LH,  inibina, PGF2α, fattori enzimatici e meccanici.  Questo complesso evento si verifica normalmente  a metà del ciclo mestruale nella donna in età fertile. E’ un evento fondamentale nel complesso meccanismo della riproduzione.

La formazione dei follicoli ovarici, che rappresentano strutturalmente la quota più cospicua e il compartimento funzionale più importante della corticale ovarica, inizia nel periodo embrionale, durante il quale si costituisce una riserva di cellule germinali: gli ovogoni.  Questi vanno incontro a proliferazione mitotica  che inizia dalla 4a settimana di gestazione e raggiunge l’acme alla 7a settimana  quando i follicoli ovarici raggiungono il numero di 7.000.000 circa. Gli ovogoni si trasformano in ovociti primordiali del diametro di 25 µ bloccato nello stadio di profase  della prima divisione meiotica. L’ovocita primordiale si  circonda di un singolo strato di cellule della granulosa appiattite esternamente racchiuse da una membrana basale. Si formano così i follicoli primordiali con un diametro di 30 µ.  

Dalla 7settimana  inizia la fase di degenerazione follicolare e morte cellulare per apoptosi che dalla 12a settimana non è più compensata dalla proliferazione mitotica e quindi il numero dei follicoli progressivamente diminuisce. Al momento della pubertà il patrimonio follicolare dell’ovaio é costituito da circa 300.000 follicoli primari Questi ultimi, rispetto ai follicoli primordiali,  sotto l’azione dell’FSH, presentano una trasformazione delle cellule della granulosa da pavimentose semplici  in cubiche e da monostrato in pluristratificate (2-3 strati) raggiungendo un diametro totale di 2-3 mm. Inoltre sia la granulosa che l’ovocita primario secernono 4 glicoproteine (denominate ZP1, ZP2, ZP3 and ZP4) e microvilli (GAP junctions, giunzioni comunicanti). Le GAP sono giunzioni intermembranose costituite da una serie di canalicoli (o connessoni) del diametro di 2 nm e lunghi 7,5 nm che si aprono e chiudono con meccanismo a scatto in risposta a modificazione del pH o a variazioni delle concentrazione degli ioni calcio. Le gap junctions permettono  il passaggio di ioni o molecole di basso peso molecolare (fino a 1 kDa) tra le cellule della granulosa e l’ovocita (4,5)Le gap junctions, le glicoproteine  e uno strato di acqua interposte tra l’ovocita e le cellule della granulosa formano la zona pellucida o membrana vitellina che si frappone fra le membrane citoplasmatiche. La ZP ha un ruolo fondamentale nel processo di fecondazione prevenendo la polispermia e inducendo la reazione acrosomiale dello spermatozoo (5-11).


Fino alla pubertà, alla scansione ecografica  si osserveranno solo follicoli primari del diametro di 2-3 mm. Di questi follicoli la maggior parte é destinata a scomparire per atresia mentre molti altri, sotto l’azione dell’FSH,  si trasformeranno in follicoli secondari.

Nel follicolo secondario le cellule della granulosa subiscono un’ulteriore proliferazione in numero (3-6 strati) ed in grandezza ed iniziano la secrezione di liquido colloide formando piccoli spazi fra gli strati della granulosa (corpi di Call-Exner). Le cellule dello stroma connettivale dell’ovaio intervengono a far parte del follicolo, circondandolo a formare la teca follicolare.

Follicolo terziario:   sotto l’influenza  dell’FSH, alcuni follicoli secondari continuano la maturazione e si trasformano in follicoli terziari ma uno solo, il follicolo leader, riesce a completarla e raggiungere lo stadio IV° o di de Graaf. La selezione follicolare avviene al 5-7° giorno del ciclo. Il follicolo leader è quello che fortuitamente, o per maggiore sensibilità all’FSH, riceve maggiori quantità di FSH ed LH ed è quello che esprimerà più recettori per quest’ultime, ricevendo ancora ancor più gonadotropine instaurando un circolo vizioso a suo favore mentre gli altri follicoli vanno incontro ad una progressiva atresia pur avendo assunto una certa capacità steroidogenetica.Le cellule della granulosa continuano a proliferare soprattutto da un lato avvolgendo l’ovocita e andando a  costituire il cumulo ooforo. La secrezione di liquido follicolare aumenta e l’antro è nettamente visibile ecograficamente. Le cellule tecali si dispongono in due strati: esterno (endocrinologicamente inerte) ed interno (ormono-secernenente). Le cellule tecali e quelle della granulosa sono separate dalla membrana di Slaviaskj.

Follicolo pre-ovulatorio di de Graaf: il follicolo va incontro a ulteriore maturazione e aumento di volume. Racchiuso nella sua membrana basale presenta dall’esterno all’interno un doppio strato di cellule tecali: esterne (non dotate di funzionalità steroidogenetica) e uno strato di cellule tecali interne deputate alla sintesi degli androgeni e del progesterone. Più internamente sono situate gli strati delle cellule della granulosa nettamente separate dalle cellule tecali dalla membrana di  Slavianskj.  I vasi sanguigni sinusoidali sono situati solo fra le cellule tecali e mai negli strati della granulosa. La cavità antrale occupa la parte centrale del follicolo e il liquido follicolare spinge sia l’ovocita che le cellule della granulosa verso la periferia; si viene così a formare il cumulo ooforo. Il follicolo è ormai maturo e viene chiamato follicolo di Graaf che raggiunge un diametro di 18-21 mm (range 16-24 mm)  a causa dell’iperplasia delle cellule tecali e della granulosa e dell’abbondanza del liquido follicolare.  L’ovocita, avvolto nella membrana detta membrana vitellina o zona pellucida, raggiunge le dimensioni definitive di 100-150 micron (0.1-0.15 mm). Nel follicolo pre-ovulatorio di de Graaf, sotto l’azione dell’LH, il cumulo ooforo si distacca dalla granulosa basale e va a posizionarsi  all’estremità distale del follicolo. La sua apposizione sulla parete interna del follicolo determina una sporgenza a convessità esterna, lo stigma, dal quale uscirà l’ovocita.

Quindi dei 7 milioni di follicoli presenti nell’ovaio fetale, solo 400-500, durante la vita riproduttiva della donna, andranno incontro alla completa maturazione ed alla ovulazione con liberazione di un ovocita maturo ad ogni ciclo. Tutti gli altri follicoli, il 99.9%, vanno in atresia e scompaiono per apoptosi.

Nei follicolo che giunge a maturità, l’ovocita, completate le ultime tappe del suo accrescimento, porta a termine la prima divisione meiotica (detta anche riduzionale), che, grazie ad una citodieresi asimmetrica, produce un il    primo globulo polare e l’ovocita di 2° ordine nel quale il corredo cromosomico è ormai aploide. Dopodichè l’ovocita secondario inizia la meiosi II che però si arresta in metafase.  Lo sblocco di queste due meiosi è dovuto alla neutralizzazione, da parte dell’ormone luteinizzante (LH), di un fattore inibente la meiosi prodotto dalle cellule del cumulo ooforo e reperibile nel liquido follicolare.  Al momento della sua espulsione, l’oocita di 2° ordine è bloccato nella metafase della seconda divisione meiotica che potrà completarsi con la formazione dell’uovo maturo e l’emissione del II° globulo polare, solo se avrà luogo la fecondazione.

La rottura del follicolo: il meccanismo non è ancora completamente conosciuto ed è  scarsamente studiato. Tra i fattori che determinano lo scoppio follicolare il principale risulta il surge dell’LH,  che è all’apice della piramide delle reazioni a cascata che provocano lo scoppio del follicolo. Il surge dell’LH è determinato dall’aumentata secrezione di estradiolo che agisce con meccanismo di feed-back positivo su ipotalamo ed ipofisi (8-14). Sotto l’azione dell’LH, cAMP mediata,  le cellule della granulosa, specialmente quello dello strato basale più ricco di recettori per LH (22,23), aumentano di volume e secernono maggiore quantità di liquido follicolare (costituito da acqua e mucopolisaccaridi),  il cumulo ooforo si libera prima nel liquido follicolare e poi si avvicina alla parete distale del follicolo, si incunea nello spazio creato dalla degradazione enzimatica e forma sulla superficie esterna dell’ovaio un’estrusione rotondeggiante chiamata stigma. L’aumentata pressione endofollicolare era ritenuta la principale causa dello scoppio follicolare fino agli anni ’60. Il razionale di questa conclusione era basata sul rapido aumento del volume del liquido follicolare nelle ore precedenti la rottura follicolare.   Successivamente si è dimostrato che la maggiore secrezione di liquido follicolare non sempre corrisponde ad una maggiore pressione endoluminale e che quest’ultima, ove fosse presente, gioca un ruolo secondario nel meccanismo dello scoppio follicolare (13-14).

Attualmente primaria importanza si attribuisce ad alcuni enzimi proteolitici come la plasmina, la collagenasi e le metalloproteinasi (24), la fosfatasi acida,i lisosomi, NO, i radicali liberi dell’ossigeno, leucociti  e varie citochine (IL-1, EGF) che, attivati dall’LH, degradano il collagene della parete follicolare fino alla sua rottura permettendo la deiscenza dell’ovocita (14,15,21).

La prostaglandina PGF2α e l’angiotensina II stimolano la contrazione delle fibrocellule muscolari lisce perifollicolari e inducono vasocostrizione (calcio-mediata) delle arteriole perifollicolari. In particolare subiscono vasocostrizione e corrosione le arteriole situate nella zona dello stigma (14-19). La somministrazione di prostaglandina-sintetasi (indometacina) nel ratto inibisce lo scoppio del follicolo anche in presenza di LH-HCG (16-17).

Progesterone: fattore chiave dello scoppio follicolare. Antagonisti del progesterone, incluso RU 486, inducono riduzione o blocco dello scoppio follicolare. Le cellule della granulosa iniziano a secernere progesterone nei giorni precedenti il picco di LH, ma è immediatamente dopo il surge di LH che la produzione di progesterone da parte delle cellule della granulosa è massima

Sotto l’azione combinata di tutti questi fattori, il liquido follicolare e l’ovocita, circondato da alcune cellule del cumulo ooforo (che vanno a formare la corona radiata), viene espulso dall’ovaio.

Quindi i principali fattori attualmente conosciuti che determinano lo scoppio del follicolo sono;

  1. LH
  2. Progesterone
  3. PGF2α
  4. Angiotensina II
  5. Collagenasi
  6. Plasmina
  7. Metalloproteinasi
  8. fosfatasi acida
  9. lisosomi
  10. Citochine (Il-1, EGF)
  11. Leucociti 
  12. Aumentata pressione intrafollicolare (?)

Le fimbrie tubariche, che nel periodo dell’ovulazione si sono avvicinate alle ovaie, catturano l’ovocita e lo spingono all’interno dell’ovidotto.

L’ovulazione può essere dimostrata solo ecograficamente quando si vede la scomparsa del follicolo che nei giorni precedenti aveva raggiunto dimensioni maggiori di  cieca 18-20 mm. In corso di laparoscopia è possibile osservare  lo stigma; In rarissimi casi, con molta fortuna, si è potuto osservarsi un’ovulazione in diretta. 

L’imminenza dell’ovulazione è segnalata, oltre che dai dosaggi ormonali e dalla scansione ecografica, dalla trasformazione del muco cervicale che diventa abbondante, chiaro e filante con l’approsimarsi dell’ovulazione.

La filanza del muco cervicale (spinbarkeit) si misura ponendo una goccia del muco fra due vetrini e misurare la distanza che si riesce ad ottenere senza rompere il contatto; la distanza fra i due vetrini aumenta con l’approssimarsi dell’ovulazione.

Una goccia del muco cervicale strisciata su un vetrino mostrerà all’osservazione microscopica una tipica arborescenza “a foglia di felce” (fern-test) da attribuire alla cristallizzazione dei sali di sodio contenuti nel muco. Il grado di arborizzazione è espressa in gradi (I-II-III-IV) ed è strettamente correlata con la concentrazione plasmatica di 17-β-estradiolo. 

In genere dopo 24-36 ore dall’acme di queste caratteristiche del muco si verifica l’ovulazione.

Altro segno indiretto dell’ovulazione è dato dalla curva della temperatura basale che, rispetto alla media della temperatura in fase follicolare, presenta un picco di +1 °C in corrispondenza dell’ovulazione, e quindi in fase luteale si assesta  su un plateau costante di -0.5 °C rispetto al picco ovulatorio (v. grafico successivo).

                                                                                 

Steroidogenesi follicolare: L’ovaio, stimolato da FSH ed LH, produce tutte e tre le classi di steroidi sessuali: estrogeni, progestinici e androgeni ma in differenti percentuali rispetto al testicolo a causa della diversità di enzimi critici. L’ovaio si differenzia dal corticosurrene perchè manca sia della 21-β-idrossilasi che della 11-β-idrossilasi e pertanto non può produrre glicocorticoidi e mineralcorticoidi (1,2). Oltre agli androgeni, E2 e P nel follicolo ovarico sono sintetizzati β-inibina, attivina, IGF I, IGF II, TGF, AMH.

FSH: è responsabile della

  • proliferazione delle cellule della granulosa
  • secrezione del liquido follicolare
  • secrezione dell’estradiolo (stimolando l’aromatasi)
  • induzione dei recettori per LH nel follicolo antrale
  • proliferazione dei recettori per FSH
  • secrezione dell’aromatasi
  • secrezione di inibina

Il calo della concentrazioni di FSH all’8° giorno circa del ciclo mestruale svolge un ruolo importante nella selezione del follicolo dominante. La secrezione di FSH in declino all’8° giorno circa previene lo sviluppo follicolare multiplo, in quanto solo il follicolo leader  rimane al di sopra della soglia (threshold) di FSH perchè ha il maggior numero di recettori FSH e può continuare a svilupparsi mentre gli altri follicoli passano in atresia per insufficiente stimolazione FSH. I recettori FSH scompaiono dal follicolo nella fase pre-ovulatoria.

LH:

  • azione antimitotica: ostacola o arresta la proliferazione mitotica delle cellule della granulosa.
  • permette la captazione endocellulare del colesterolo mediante stimolazione della proteina ART.
  • stimola la secrezione di testosterone, androstenedione e progesterone tecali.
  • determina la maturazione finale dell’ovocita, ottimale secrezione di estradiolo e abilità alla rottura della parete follicolare. Nei cicli PMA/FIVET è possibile ottenere follicoli maturi con la somministrazione del solo FSH ma i follicoli così cresciuti, senza LH, possono presentarsi di scadente qualità con  bassa percentuale di fertilizzazione e pregnancy rate.
  • promuove la dissoluzione del complesso cumulus-ovocita
  • trigger dell’ovulazione promuovendo l’attivazione degli enzimi litici
  • luteinizzazione delle cellule della granulosa
  • Sblocco della meiosi
  • permette la formazione e sopravvivenza del corpo luteo
  • permette la produzione del progesterone da parte delle cellule luteali.

Durante la fase iniziale e middle-folliolare la secrezione di LH è modesta con picchi di secrezione ogni 60-90 minuti. Il picco della secrezione di LH si osserva al 10-11° giorno del ciclo ed è determinato dall’aumentata secrezione degli estrogeni che mediante feed-back positivo stimolano ipotalamo e direttamente l’adenoipofisi a produrre maggiori quanità di LH. L’ovulazione avviene approssimativamente 10-12 ore dopo il picco di LH e 24-36 ore dopo il picco follicolare di estradiolo.

Quindi le due gonadotropine agiscono in sincronia  e contemporaneamente ma in concentrazioni diverse e su cellule distinte. Ciò ha indotto molti AA. a formulare la teoria delle 2 cellule 2 gonadotropine.


 Il follicolo dominante acquisisce un’elevata capacità steroidogenetica con picco al 12º giorno e cioè 36-48 ore prima dell’ovulazione.
Estradiolo (E2): è il più importante dei tre estrogeni presenti in circolo. E’ secreto dalla cellule della granulosa per trasformazione degli androgeni ad opera dell’aromatasi (CYP 19) sotto l’influenza dell’FSH. Raggiunge un picco di 150-300 pg/ml al 9-10° giorno del ciclo per declinare rapidamente poco prima del picco LH. In fase middle-luteale l’estradiolo presenta un nuovo modesto rialzo dovuto all’attività delle cellule luteali. Funzioni dell’E2 nel processo ovulatorio:

  • stimola la crescita follicolare in sinergia con l’FSH
  • stimola la filanza e la quantità del muco cervicale
  • Stimola la secrezione del liquido antrale.
  • stimola la secrezione ipofisaria di LH mediante feed-back positivo sia a livello ipotalamico che direttamente sull’adenoipofisi
  • deprime la secrezione di FSH con meccanismo di feed-back negativo a livello ipofisario

 I livelli di E2 precipitano alcune ore dopo che l’LH ha raggiunto il suo picco per poi risalire in fase middle-luteale ed in fase pre-mestruale.

Estrone (E1): prodotto al 50% dalla granulosa, al 30% dal surrene per metabolizzazione del DHEA e al 20% a livello del tessuto adiposo per conversione dagli androgeni. In ogni caso agisce l’enzima aromatasi (CYP 19), L’E1 Ha un’emivita molto breve e possiede un’efficacia funzionale pari al 30% dell’E2. La sua maggiore produzione percentuale si verifica nei follicoli primari e secondari e quindi è il principale componente  della concentrazione ematica iperestrogenica delle pazienti PCO.

Estriolo (E3): funzionalmente è il più debole dei 3 estrogeni,  è il risultato della metabolizzazione di estradiolo ed estrone a livello epatico e placentare (3).

Androgeni: favoriscono la crescita follicolare in sinergia dell’FSH. Ma in assenza di FSH determinano atresia follicolare. L’aromatasi permette la metabolizzazione degli androgeni in estrogeni.

 

AMH: la secrezione di AMH è più alta nei follicoli primari,  diminuisce e quindi si arresta nel momento in cui i follicoli si ingrandiscono. Non vi è quasi AMH nei follicoli umani >8 mm. Per questi motivi, i livelli sono quasi costanti ed il test AMH può essere fatto in qualsiasi giorno del ciclo della donna. Con l’aumento dell’età femminile la dimensione dell’insieme dei follicoli microscopici rimanenti, diminuisce. Allo stesso modo, diminuiscono i loro livelli ematici di AMH ed il numero dei follicoli ovarici antrali visibili con ecografia. Donne con molti piccoli follicoli, come coloro con ovaie policistiche hanno alti valori dell’ormone AMH e donne che hanno pochi follicoli rimanenti e coloro che sono vicine alla menopausa hanno bassi livelli di ormone antimulleriano.

Prolattina: la prolattina influenza indirettamente la funzione ovarica modulando la secrezione delle gonadotropine. La presenza di recettori specifici sulle cellule della granulosa del follicolo di de Graaf evidenzia incontestabilmente un ruolo diretto della PRL esercita sull’ovulazione ma il meccanismo è ancora sconosciuto (20).

Corpo luteo:

L’ovulazione di norma avviene quindi dopo uno sviluppo follicolare durato circa 14 giorni e ad essa segue la trasformazione delle cellule della granulosa in cellule luteiniche e la luteinizzazione anche delle cellule della teca (cellule teco-luteiniche).  Si ha così la formazione del corpo luteo che ha un’attività steroidogenetica caratterizzata dalla prevalete secrezione del progesterone su quella degli estrogeni. Se non si verifica la fecondazione la vita del corpo luteo dura solo  14 giorni, ma già dopo una settimana la sua attività comincia a declinare perché i livelli crescenti di progesterone e di estrogeni, che il corpo luteo ha prodotto in fase di massima attività, inducono a livello ipofisario e ipotalamico, per un feed back inibitorio o negativo, una progressiva depressione dei livelli di Gn-RH, LH, FSH e, di conseguenza, la funzione luteinica tende ad esaurirs e le cellule muoiono per apoptosi.

Se si verifica la fecondazione e, quindi, si instaura la gravidanza, il trofoblasto embrionale incomincia a produrre precocemente sempre più elevate quantità di gonadotropina corionica (HCG, Human Chorionic Gonadotropin), ad azione simile all’LH ipofisario. In questo caso non si ha più il declino funzionale del corpo luteo che anzi aumenta la sua efficienza e diventa corpo luteo gravidico, persistendo per qualche mese nella sua attività. Se la fecondazione non c’é stata, al declino funzionale del corpo luteo (con la rapida caduta dei livelli ematici di progesterone e di estrogeni), consegue lo sfaldamento della mucosa uterina: la mestruazione.

ANOVULAZIONE

L’assenza dell’ovulazione può dipendere da varie cause: alcuni farmaci (antineoplastici), insufficienza ormonale, contraccezione orale. L’induzione artificiale dell’ovulazione, tramite la somministrazione di FSH e LH purificati, fa parte del trattamento di alcune forme di sterilità. La mancata ovulazione non si traduce necessariamente in amenorrea.

ATRESIA FOLLICOLARE:

Il processo di atresia è caratterizzata da:

  1. degenerazione delle cellule della granulosa e morte geneticamente programmata per apoptosi che vengono rimpiazzate da fibroblasti;
  2. riassorbimento del liquido antrale con obliterazione della cavità antrale;
  3. sostituzione dei componenti situati all’interno della lamina basale con tessuto cicatriziale e avascolare con formazione dei cosiddetti corpi albicanti.
  4. Contemporaneamente le cellule tecali da prima si ipertrofizzano, successivamente si differenziano e ridiventono cellule interstiziali. Queste cellule conservano una debole attività steroidogenetica, soprattutto per quanto riguarda la produzione di androgeni .

 Compiti del follicolo atresico:

  • A parte il dissolvimento degli ovociti nei follicoli che non vanno incontro all’ovulazione, il ruolo funzionale dell’atresia nell’ovaio non è ben chiaro.
  • Durante le prime fasi della pubertà, prima della comparsa dei cicli ovulatori, i follicoli destinati all’atresia sono in grado di produrre estrogeni, importanti per lo sviluppo dei caratteri sessuali secondari.

Il processo atresico sembra essere regolato dagli androgeni ed in particolare dalla frazione 5-alfa-ridotta, non aromatizzabile.

Bibliografia:

  1. Erickson GF: “An analysis of follicle develop,emt and ovum maturation”. Seminars Repeod Endocrinol; 1986 4:233
  2. Hillier SG, Reichert LE jr, Van Hall EV: “Control of preovulatory follicular estrogen biosyntesis in the human ovary”. J Clin Endocrinol Metab; 1981;52:847
  3. Barney Kadis: “Estriol Biosynthesis by Sow Ovary” Biochemistry, 1964, 3 (12), pp 2016–2019
  4. Gupta SK1, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, Gupta N.: “Mammalian zona pellucida glycoproteins: structure and function during fertilization”. Cell Tissue Res. 2012 Sep;349(3):665-78.
  5. Gupta SK, Bansal P, Ganguly A, Bhandari B, Chakrabarti K.: “Human zona pellucida glycoproteins: functional relevance during fertilization”.J Reprod Immunol. 2009 Dec; 83(1-2):50-5. Epub 2009 Oct 21.
  6. Gupta SK, Chakravarty S, Suraj K, Bansal P, Ganguly A, Jain MK, Bhandari B.Structural and functional attributes of zona pellucida glycoproteins.Soc Reprod Fertil Suppl. 2007; 63:203-16.
  7. Omidi M et al: “zona pellucida and meiotic spindle visualitation of human oocytes are not influenced by in vitro maturation tecnology”.  Intern J Fertik and steril 2013;7,S1:35-36
  8. Michal Margalit a, Gedalia Paz a, Haim Yavetz a, Leah Yogev a, Ami Amit a, Tamar Hevlin-Schwartz a,Satish K. Gupta b, Sandra E. Kleiman: “Genetic and physiological study of morphologically abnormal human zona pellucida”. European J Obstet Gynecol Reprod Biol 2012; 165:70–76
  9. Lefievre L, Conner SJ, Salpekar A, et al. Four zona pellucida glycoproteins are expressed in the human. Human Reproduction 2004;19:1580–616.
  10. Conner SJ, Lefievre L, Hughes DC, Barratt CL. Cracking the egg: increased complexity in the human zona pellucida. Human Reproduction 2005;5:1148–52.
  11. Wassarman PM. Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis and fusion. Cell 1999;96:175–83.
  12. LeMaire WJ “Mechanism of mammalian ovulation”. Steroids. 1989 Nov;54(5):455-69.
  13. Morioka N, Zhu C, Brännström M, Woessner JF, LeMaire WJ.: “Mechanism of mammalian ovulation”. Prog Clin Biol Res. 1989; 294:65-85.
  14. Okamura H.: Control mechanism of ovarian function”. Nihon Sanka Fujinka Gakkai Zasshi: 1991 Aug; 43(8):890-6.
  15. Cajander S, Bjersing L: Fine structural demonstration of acid phosphatase in rabbit germinal epithelium prior to induced ovulation. Cell Tissue Res 164: 179, 1975
  16. Yoshimura Y, Santulli R, Atlas SJ et al: The effects of proteolytic enzymes on in vitro ovulation in the rabbit. Am J Obstet Gynecol 157: 468, 1987
  17. Edward E. Wallach: “The Mechanism of Ovulation”. online 2013
  18. Diaz-Infante A Jr, Wright KH, Wallach EE: Effects of indomethacin and prostaglandin F on ovulation and ovarian contractility in the rabbit. Prostaglandins 5: 567, 1974
  19. Wallach EE, de la Cruz A, Hunt J et al: The effect of indomethacin on HMG-HCG induced ovulation in the indomethacin-treated Rhesus monkey. Prostaglandins 9: 645, 1975
  20. Hamada Y et al:Inhibitory effect of prolactin on ovulation in the in vitro perfused rabbit ovary. Nature 285: 15, 1980
  21. Cajander S, Bjersing L: Fine structural demonstration of acid phosphatase in rabbit germinal epithelium prior to induced ovulation. Cell Tissue Res 164: 179, 1975
  22. Hum. Reprod. Update (2007) 13 (3): 289-312.
  23. Bortolussi M,Marini G,Reolon ML. A histochemical study of the binding of 125I-HCG to the rat ovary throughout the estrous cycle. Cell Tissue Res1979;197:213-26.
  24. Brannstrom M, Woessner JFJ, Koos RD,et al. Inhibitors of mammalian tissue collagenase and metalloproteinases suppress ovulation in the perfused rat ovary. Endocrinology1988;122:1715-21.
  25. Brannstrom M, Pascoe V,  Norman RJ, et al . Localization of leukocyte subsets in the follicle wall and in the corpus luteum throughout the human menstrual cycle. Fertil Steril 1994;61:488-95.
Eco, Endocrinologia, PMA

Il corpo luteo

INTRODUZIONE

Il corpo luteo (CL) è stato per la prima volta descritto da Marcello Malpighi (1628-1694) e  accuratamente studiato da Regnier de Graaf (1641-1673). E’ la formazione ovarica che origina dall’evoluzione del follicolo dopo lo scoppio ovulatorio. L’ovulazione fisiologica, visibile alla scansione ecografica, corrisponde alla deiscenza del liquido follicolare, dell’ovocita, della  zona  pellucida,  della  corona radiata e di un numero  considerevole  di  cellule  del  cumulus ooforo

Possono verificarsi anomalie dell’ovulazione come la cosiddetta LUF-Syndrome (Luteinized Unrupted Follicle Syndrome) in cui non avviene lo scoppio del follicolo che va incontro a luteinizzazione con  all’interno il suo ovocita dotato di buone caratteristice morfologiche e un buon indice di fecondazione e cleavage in vitro. Altre volte il follicolo matura  e scoppia normalmente ma si presenta vuoto, senza ovocita (Empty Follicle). Altre volte ancora il follicolo, normalmente maturo e scoppiato, non espelle l’ovocita per problemi meccanici e/o flogistici (1).

ASPETTO  MACROSCOPICO DEL CORPO LUTEO:

L’aspetto  macroscopico  del corpo luteo maturo non è  sempre  lo  stesso  e  nemmeno  le  sue dimensioni che variano dai 10 ai 20 mm di diametro. All’osservazione laparascopica il corpo luteo (CL) appare come una fomazione rotondeggiante, raggrinzita e festonata, cistica, che talvolta assume un aspetto polipoide.  Il suo colore  roseo-giallastro  sembra  luccicare  attraverso  l’epitelio ovarico che lo ricopre.  In altri casi, il corpo luteo può trovarsi qualche centimetro al di sotto della superficie ovarica ed essere rilevabile solo  mediante  la  sezione dell’ovaio.  La  cavità  può  essere  piccola  con   un   modesto contenuto liquido, o può presentarsi molto ampia e distesa con un liquido giallastro  (inclusioni lipidiche) dal quale deriva il nome: “corpo giallo”.

Il corpo luteo presenta 4  stadi di    sviluppo:    

1.   proliferazione
2.   vascolarizzazione
3.   maturazione 
4.   regressione

  1. Stadio proliferativo: Nello   stadio proliferativo, quando il follicolo  maturo  di  Graaf  si  rompe, vengono liberati l’ovocita, il liquido follicolare ed  una  parte considerevole della granulosa circostante. Le  pareti  collassate del follicolo svuotato formano convoluzioni attorno  alla  cavità ripiena di sangue. Le cellule  della  parete  follicolare, sia della granulosa che tecali,  iniziano  la  trasformazione strutturale e funzionale in cellule  luteiniche.

2. Stadio di vascolarizzazione: inizialmente sono presenti numerose ampie lacune contenenti sangue stravasato  ma    nessun  vaso  sanguigno essendone sprovvisto il follicolo nella porzione contenente le cellule della granulosa a loro volta ben separate da una membrana basale dalla zona tecale ben irrorata da una vasta rete sinusoidale  (1). Dopo l’iniziale emorragia, i  gettoni  endoteliali provenienti  dai  vasi tecali,  penetrano  nella granulosa e nella cavità emorragica del follicolo nelle  48-72  ore  successive  all’ovulazione. Di  norma  è presente un anello ben evidente di vascolarizzazione che segue il percorso della struttura vasale che circondava il primo follicolo pre-ovulatorio e che diventa ancora più evidente con il progredire della maturazione del corpo luteo. All’esame Energy doppler, è possibile mettere in evidenza il caratteristico “anello di fuoco”, e l’esame Doppler rivela un flusso diastolico predominante; non si osserva vascolarizzazione endocistica (2). L’aspetto ad “anello di fuoco” è secondario all’aumentata vascolarizzazione periferica e risulta un segno aspecifico, poiché può esser visto allo stesso modo in un follicolo del Graaf maturo.

  3. Stadio di maturazione:  4  giorni  dopo l’ovulazione, le cellule del corpo luteo hanno raggiunto la  loro massime dimensione ed hanno completato la loro trasformazione  in cellule luteiniche.  Se è presente una cavità centrale, si distingue uno strato  di  tessuto  connettivo ben distinto che contorna tipicamente la cavità del corpo  luteo. In assenza di cavità  centrale,  al  centro  del  corpo  luteo  è generalmente presente una sottile linea iperecogena da riferire alla coagulazione dello stravaso ematico tecale.

Corpus albicans istologia

4. Stadio di regressione: durante la luteolisi si verificano due eventi strettamente correlati: la perdita della capacità di sintetizzare e secernere progesterone (49) e le variazioni involutive fino alla morte delle cellule che compongono il corpo luteo (50). Al 23º giorno del  ciclo  mestruale   nel corpo luteo  compaiono  i  fenomeni  involutivi   caratterizzati dalla connettivizzazione del coagulo  centrale, rimozione del  pigmento  ematico da parte dei leucociti, degenerazione   grassa e fibrosi dellle cellule parietali ed infine   dalla ialinizzazione della  zona  luteinica  con  aumento  del  tessuto cicatriziale all’interno della cavità. Il rilascio di PGF2α luteale costituisce il “drilling” della luteolisi. Infatti  le variazioni involutive della cellule luteiniche  diventano evidenti 24-36 ore dopo l’esposizione a PGF2α (57). Questa prostaglandina agisce essenzialmente provocando intensa vasocostrizione  mediante sovraespressione di endotelina-1 e conseguente ipotrofia, ipossia e mortedelle cellule luteiniche (51-56). Inoltre la PGF2α attiva la Fosfolipasi C che catalizza l’idrolisi del fosfatidilinositolo e la liberazione del Ca+ dal reticolo endoplasmatico libero con effetto demolitivo sulla membrana cellulare ed apoptosi delle cellule luteiniche (71).

Il colore giallastro  può persistere a lungo anche per molti mesi, ma infine  scompare.  Il prodotto  finale  è  il  corpus  albicans  che  appare  come  una struttura biancastra, ialinizzata e convoluta che  lentamente  si riduce di dimensione (7).

Dal corpus albicans si distingue iI corpus fibrosum, prodotto di degenerazione delle piccole cisti funzionali (PCO), per le sue dimensioni inferiori e per la  sottile  parete  fibrosa   meno ialinizzata rispetto al corpus albicans.

Cellule immunitarie nella luteolisi: il sistema immunitario ricopre un ruolo critico nel processo  luteolitico. La splenectomia in ratti determina concentrazioni elevate di progesterone nel siero e questo effetto è invertito mediante iniezione di splenociti (58). Durante la luteolisi il CL è invaso dai macrofagi     che svolgono 4 principali funzioni: fagocitosi delle cellule in degenerazione (59-63),  degradazione della matrice extracellulare (64,65), inibizione citochine-mediata della steroidogenesi e  stimolazione della secrezione di PGF2α dal corpo luteo (66). Durante la luteolisi, i linfociti T infiltrano il corpo luteo e secernono interferone-γ (IFN-γ), che stimola la’espressione dei principali antigeni di istocompatibilità sulla superficie delle cellule luteali (67). L’interleuchina-1 (IL-1) prodotto da macrofagi, fibroblasti e cellule endoteliali (67) stimola la produzione di PGF2α da cellule coltivate luteale. Il fattore di necrosi tumorale-α (TNF-α), prodotto da macrofagi, inibisce la secrezione di progesterone basale e stimola la secrezione PGF2α (68).

 

CORPO LUTEO GRAVIDICO:

Se l’ovocita viene fecondato, il corpo luteo  non  regredisce  ma continua a svilupparsi sotto lo stmolo dell’HCG (prodotta dal sinciziotrofoblasto) divenendo considerevolmente più grande del  corpo luteo mestruale, fino ad occupare talvolta un terzo o anche la metà del volume ovarico.  Ma   esiste una considerevole  variabilità di volume e consistenza fra i corpi lutei gravidici alcuni dei quali sono a struttura prevalentemente solida. Le cellule  luteiniche  sono grandi  e  di  aspetto  simile  a  mattonelle,   e   le   cellule paraluteiniche  sono  spesso  numerose.  Lo  sviluppo  massimo viene raggiunto alla 10-12ª settimana in corrispondenza con il picco dell’HCG(3-6). Alla fine della  16ª  sett. di gestazione il corpo luteo gravidico incomincia  a  regredire.  Al  termine  della   gravidanza solitamente  non  è  riscontrabile   alcuna   cavità   luteinica. Tuttavia, il corpo luteo può essere ancora riscontrabile.

Istologia del corpo luteo:  Il corpo luteo umano è composto da due tipi di cellule steroido-secernenti: le grandi cellule luteiniche o cellule luteiniche-granulosa e le piccole cellule luteiniche o cellule luteiniche-tecali (26,27). Nel follicolo le cellule della granulosa sono separate dalle cellule tecale ad opera di una membrana vasale. La granulosa sono sprovviste di vasi sanguigni presenti invece nella teca esterna ed interna. Con lo scoppio del follicolo avviene l’epulsione dell’ovocita, del liquido follicolare, cellule della corona radiata e la lacerazione dei vasi sinusoidali con invasione emorragica della cavità luteale neoformata.

La proliferazione delle cellule endoteliali sinusoidali si traduce in un’ampia rete capillare, requisito   fondamentale per lo sviluppo del corpo luteo (30, 31). La neovascolarizzazione occupa il 22% del volume totale del corpo luteo (32),  con un  flusso sanguigno di 6-10 ml/grammo/minuto di tessuto luteale  superando quello di molti altri tessuti. Inoltre, la maggior parte delle cellule luteale sono direttamente adiacenti capillari (59%) o adiacenti allo spazio interstiziale (37%) in prossimità di capillari (32). Tale giustapposizione di cellule luteale ai capillari provvede alle elevate esigenze metaboliche del corpo luteo, che consumano 2-6 volte più ossigeno per unità di peso che non il fegato, rene e cuore (33).

 Le grandi cellule luteiniche, derivanti dalle cellule della granulosa e che pertanto occupano il centro della ghiandola, sono stimolate dall’FSH a produrre estrogeni, aromatizzando i precursori androgeni  provenienti sia da produzione propria che dalle adiacenti piccole cellule luteiniche, e contribuiscono alla produzione basale di progesterone.

Le piccole cellule luteiniche, di derivazione tecale, e che occupano la zona più esterna del corpo luteo, sotto il controllo dell’LH producono progesterone ed androgeni che in parte vengono secreti in circolo ed in parte rappresentano il substrato per l’aromatasi delle grandi cellule luteiniche che li trasformano in estrogeni.

Oltre alle cellule steroidogeniche, il corpo luteo contiene cellule endoteliali, fibroblasti, periciti e cellule provenienti dal circolo ematico (26,27).

 


ENDOCRINOLOGIA DEL CORPO LUTEO:

Il corpo luteo si comporta come una ghiandola endocrina: secerne il progesterone ed altri ormoni necessari a predisporre l’utero  alla  gravidanza  e  a mantenere la gravidanza nei primi stadi di sviluppo ed impianto.

La secrezione del progesterone, come di tutti gli ormoni steroidei, ha come progenitore il colesterolo, sintetizzato dal fegato, indifferentemente in forma HDL o LDL che viene assorbito  per endocitosi (34) nel citoplasma delle piccole cellule luteiniche. Ogni molecola di LDL contiene circa 2500 molecole di colesterolo. Le lipoproteine nel citoplasma subiscono un processo di esterificazione ed  idrossilazione per ottenere il colesterolo libero che viene trasportato,  con l’aiuto della proteina STAR (Steroidogenic Acute Regulator) attivata dall’LH (35-37), nei mitocondri dove è metabolizzato in pregnenolone. L’alcooò sopprime l’azione della START. Il pregnenolone è poi trasportato attraverso i microtubuli nel reticolo endoplasmatico liscio  dove viene metabolizzato in progesterone (35). In condizioni di ipocolesterolemia, le cellule luteali soil sono in grado di sintetizzare colesterolo dall’acetato (38,39).

Le cellule steroidogeniche ovariche (granulosa e teca interna) nel loro citoscheletro possiedono gli enzimi necessari per la produzione di progesterone, androgeni ed estrogeni.  Nel follicolo ovarico non luteinizzato, nello stroma prevale la via biosintetica dei 5-3-β-idrossisteroidi, che porta alla produzione di androgeni ed estrogeni, ma non di progesterone, mentre la via dei 4-3-chetosteroidi predomina nel corpo luteo (7). L’HCG stimola direttamente la secrezione di progesterone da parte delle piccole cellule luteniche (derivazione tecale) attraverso l’attivazione della proteinchinasi (7). Le grandi cellule luteiniche derivano dalle cellule della granulosa, sono capaci di produrre modeste quantità di estrogeni, androgeni e contengono recettori per la  PGF . Quest’ultima stimolata dagli estrogeni sembra essere il fattore maggiormente interessato nell’azione luteolitica (7).

Numerose gravidanze si sono verificate  nonostante  la  rimozione precoce del corpo luteo.  Pratt  ha  riportato  il  proseguimento della gravidanza dopo un intervento di rimozione del corpo  luteo eseguito al 20º giorno dopo l’ultimo ciclo mestruale, od  intorno al periodo di impianto. In una serie di casi in cui il  corpo luteo era stato rimosso nella prima fase di gravidanza,  Hall  ha riportato una percentuale di aborto leggermente superiore al  20%. Egli ha ritenuto che questo  tasso  non  fosse  superiore  a quanto  atteso  dopo  qualsiasi  tipo  di  intervento  addominale condotto nel primo trimestre di gravidanza. In  un valido studio, Tulsk e Koff hanno rimosso il corpo luteo da 14 donne che avevano richiesto la sterilizzazione e l’aborto terapeutico. L’aborto spontaneo si è verificato solo in due casi; nei restanti casi, le gravidanze furono interrotte con dilatazione e raschiamento;  10 delle 14 donne hanno continuato a produrre  normali  quantità  di pregnandiolo  fino alla rimozione del feto.

Le modificazioni degenerative del corpo luteo  di  un  ciclo  non fertile   vengono    ritardate    dalla    somministrazione    di gonadotropina corionica (HCG).  Il  corpo  luteo  secerne  progesterone sotto lo stimolo dell’HCG prodotto dall’embrione; tuttavia,   subito   dopo   l’impianto,   la   placenta    umana produce quantità di progesterone  sufficiente  per mantenere  la  gravidanza.  Perciò  il   corpo   luteo,   sebbene necessario (nella specie umana) per l’impianto, non  è  richiesto per la gravidanza dopo i primi stadi.

 

Controllo dell’attività endocrina del corpo luteo: l’attività endocrina del corpo luteo è modulata mediante un controllo di tipo centrale operato dall’ipofisi e mediante un controllo di tipo locale operato da sostanze secrete dallo stesso corpo luteo.

A LIVELLO CENTRALE:

  • Azione dell’LH:

La secrezione steroidea luteale gode di un certo grado di autonomia; infatti i picchi secretori di estradiolo e progesterone non sono immediatamente preceduti da picchi di FSH o LH. Inoltre, la ghiandola luteale se espiantata e studiata in vitro continua a secernere progesterone in modo pulsatile. Tuttavia, l’importanza dell’azione di stimolo esercitata dall’LH, tramite la proteinchinasi A, a livello luteale sulla secrezione di progesterone è ampiamente provata. Infatti l’immunoneutralizzazione dell’LH nella scimmia induce un calo repentino dei livelli plasmatici di progesterone provocando rapida luteolisi. Allo stesso modo la somministrazione di antagonisti del Gn-RH nella fase luteale determina calo della produzione di progesterone, mentre la contemporanea somministrazione di HCG o HMG, consente il mantenimento della funzione luteale pure in assenza di gonadotropine endogene. Inoltre nel 1988 Veldhuis e coll. hanno dimostrato nella donna l’esistenza di una stretta correlazione tra picchi di LH e progesterone: un picco di LH precede di 10 minuti quello di progesterone

  • Azione dell’FSH sul corpo luteo:

L’azione dell’FSH in fase luteale si esplica prevalentemente a livello delle grandi cellule luteiniche stimolando l’aromatizzazione dei precursori androgeni in estrogeni; nè in vitro nè in vivo si è mai osservato alcun effetto apprezzabile dell’FSH sulla produzione di progesterone. Pertanto, l’azione dell’FSH sembra estrinsecarsi pressoché esclusivamente sulla produzione estrogenica.

  •  Azione della Prolattina sul corpo luteo:

La prolattina promuove la sintesi di specifiche proteine in diversi tessuti. L’iperprolattinemia è stata a lungo considerata un fattore causale di deficit della fase luteale (LPD) ma diversi studi effettuati su pazienti con LDP hanno rivelato anomalie significative della secrezione di HPRL. Perciò si ritiene che l’insufficiente secrezione luteale di progesterone sia da attribuire ad anomalie secretorie o strutturali delle gonadotropine (20). Altri AA. invece ritengono che a basse  concentrazioni la prolattina risulta essere luteotrofica, mentre a dosi elevati  è luteolitica (21-23).

Controllo intragonadico della secrezione ciclica di progesterone

  • Eicosanoidi:

La somministrazione intraluteale in corso di laparascopia della PGF ha azione luteolitica diretta con accorciamento della fase luteale riducendo la sensibità delle cellule luteali all’azione di LH e HCG e inibendo l’epressione della proteina STAR. Studi recenti sul corpo luteo umano precoce, utilizzanti la metodica in vitro della microdialisi, suggeriscono una funzione stimolatoria della PGF2-alfa sulla produzione di progesterone, mediata da estrogeni e ossitocina.  L’uso di inibitori della ciclo-ossigenasi, somministrati sia per via sistemica che locale, porta ad accorciamento della fase luteale.  L’apparente paradosso si spiega se si considera che la ciclo-ossigenasi catalizza la sintesi di altri autacoidi con probabile azione luteotrofica quali la PGE2, la PGI2 e la PGD2 (antiaggreganti e vasodilatatori) che  agiscono prevalentemente aumentando la quantità di cAMP e l’attivazione della proteinchinasi A (46-48).  Gli effetti apparentemente contrastanti di PGF2-α e PGE2 sulla produzione di progesterone sembrano alla base di un equilibrio biochimico locale che può sostenere la funzione luteale o contribuire alla luteolisi (7). Questi dati sono corroborati dalla dimostrazione di una caduta del rapporto PGE2/PGF2α nel tessuto luteale umano attraverso le sue diverse fasi funzionali. Gli eicosanoidi prodotti attraverso la via della lipo-ossigenasi: acido idroperossi-eicosa-tetra-enoico e acido idrossi-eicosa-tetra-enoico inibiscono la produzione di progesterone, sia basale che HCG-stimolata in cellule luteali umane in vitro.  E’ possibile quindi che la steroidogenesi luteale sia modulata localmente non solo dalle relative concentrazioni tissutali delle diverse prostaglandine, ma anche dall’equilibrio tra prodotti della ciclo e lipo-ossigenasi. la PGF dotata di azione luteolitica sembra essere quasi esclusivamente di origine ovarica mentre scarsa importanza sulla luteolisi sembra da attribuire alla la PGF di origine endometriale (24). L’azione luteolitica della  PG F  è mediata dalla protein-chinasi C, afflusso di calcio, l’attivazione di endonucleasi, e infime morte cellulare per apoptosi. In caso di gravidanza, l’azione dell’HCG contrasta gli effetti della PGF ed il corpo luteo si mantiene trofico e continua la secrezione di progesterone (24).

  •  Estrogeni:

Gli estrogeni hanno azione inibitoria sulla secrezione di progesterone dal corpo luteoAlti livelli di estrogeni in fase luteinica hanno un’azione luteolitica stimolando la secrezione dell’ossitocina e amplificando la sensibilità dei recettori  dell’ossitocina (OXT) a livello endometriale ed ovarico. Ciò spiega l’elevata percentuale di aborti nei cicli di CFM e soprattutto nelle OHSS dove i tassi di E2 sono generalmente molto alti.

Ma gli estrogeni, indirettamente, hanno anche una funzione luteotropo perchè essi, ed in particolare il 17-β-estradiolo, sono necessari per indurre la sintesi dei recettori per il progesterone (Pr). In assenza di Pr il progesterone non potrebbe mai esplicare la sua azione (25).

  •  Androgeni: 

Per quanto riguarda gli androgeni un’azione diretta di questi sulla steroidogenesi luteale non è stata finora dimostrata; purtuttavia la presenza di recettori per gli androgeni nel corpo luteo di scimmia Rhesus suggerirebbe una regolazione da parte di questi per via autocrina e/o paracrina.

  • Progesterone:

la presenza di recettori per il progesterone nelle cellule luteali suggerisce che anche il progesterone, principale ormone prodotto del corpo luteo, potrebbe agire come regolatore luteotropo, in particolare contrastando la resintesi dei recettori per gli estrogeni (25).

  •  Ossitocina:

L”ossitocina (OXT) è un ormone peptidico a 9 aminoacidi sintetizzato nei nuclei ipotalamici sopraottico e paraventricolare e trasportatao nell’ipofisi posteriore. L’azione principale dell’ossitocina è quella di indurre le contrazioni uterine tramite  la stimolazione della PGF2alfa. L’OXT è stata trovata anche nelle grandi cellule luteiniche in concentrazione maggiore rispetto a quella sierica. Inoltre, si è osservato che i livelli sierici dell’OXT calano rapidamente dopo la lutectomia ed è stata dimostrata l’espressione genica per l’ossitocina in corpi lutei umani. Tutto ciò porta a ritenere che questo mediatore sia prodotto e secreto dalle cellule luteali oltre che dalle cellule ipotalamo-ipofisarie (8,9)Le concentrazioni tissutali di ossitocina nel corpo luteo aumentano significativamente dalla fase luteale precoce alla fase medioluteale, per poi calare nella fase luteale tardiva, in stretto parallelo con i livelli plasmatici di progesterone in modo da creare un equilibrio fra azione miorilassante del progesterone e quella contratturante dell’ossitocina.  Recenti studi in vivo sull’effetto diretto della somministrazione locale di ossitocina nel corpo luteo umano indicano un ruolo luteolitico dell’OXT, probabilmente  mediato dalla sintesi locale di PGF2α  (10,11,24).

  • Citochine e fattori di crescita

La somministrazione di interferone a donne con cicli regolari provoca una riduzione dei livelli plasmatici di progesterone senza alcun effetto sulle gonadotropine. Lo studio di colture di macrofagi o linfociti insieme a cellule della granulosa luteinizzate ha permesso di osservare come la secrezione di progesterone e di estradiolo possa essere influenzata da varie sostanze diffusibili, tra cui interferone, Interleukina-1 (IL-1) e Tumor Necrosis Factor (TNF).

Numerosi fattori di crescita sono attivati dall’azione della β-HCG. Essi sono dotati di attività mitogena e contribuiscono alla proliferazione delle cellule luteali e al mantenimento della steroidogenesi luteale con meccanismo autocrino o paracrino (28,29). Fra questi più importanti sembrano essere l’Epidermal Growth Factor (EGF), l’Insulin Like Growth Factor (IGF), e il Vascular Endothelial Growth Factor (VEGF) (8).

L’Insulin Like Growth Factor (IGF)  esplica la sua azione luteotropa inibendo la morte cellulare,   e stimolando i recettori dell’insulina a livello del corpo luteo  (40-44).

Il GH invece agisce stimolando la tirosin-chinasi (JAK 2) e consentendo quindi la fosforilazione delle proteine per consentire il trasferimento di fosfato da una proteina ad un’altra. Inoltre il GH aumenta l’epressione locale di prolattina e IGF-I (46).

ASPETTI ECOGRAFICI DEL CORPO LUTEO:

Con  l’ecografia  transaddominale l’ovaio  si identifica tipicamente alla sua posizione e forma, con l’ecografia transvaginale le ovaie si possono studiare molto più dettagliatamente nella loro architettura  e si possono facilmente evidenziare piccoli follicoli in via di sviluppo e il corpo luteo nella sua trasformazione (11).

L’architettura interna dell’ovaio è differenziabile  da  quella uterina  o  da  masse  del   miometrio   che   possono simulare occasionalmente l’ovaio. Le dimensioni dell’ovaio possono variare significativamente in relazione all’età. Ovaie di 3-4 cm di lunghezza  possono  essere  evidenziate  nelle donne con  ciclo mestruale normale e, se di morfologia  regolare, possono essere considerate normali.Il corpo luteo può confondere anche il  più  esperto  ecografista a  causa  dell’elevata  variabilità  delle  sue   caratteristiche ecografiche; esso può,  infatti,  mimare  molte  delle  patologie ovariche. Le naturali evoluzione ed involuzione del  corpo  luteo implicano  significativi  cambiamenti   macroscopici   facilmente rilevabili con l’ecografia transvaginale.  Dopo  l’ovulazione  la parete  follicolare  diventa  irregolare  e  il   follicolo   “si sgonfia” in meno di 1 minuto.  Si osserva un  iniziale  rapido  rilascio  di liquido seguito da un  successivo  lento  rilascio  in 30′ circa. Entro   1   ora dall’ovulazione si sviluppa un corpo emorragico.  La combinazione di sangue  coagulato  e  di  contenuto  liquido  può apparire  come  un’area  ecogena   frastagliata   ed   irregolare all’interno di una grande cisti con aspetto sferico, multiloculare che  si  estende  attraverso  la  superficie  ovarica  oppure  può apparire come sottilissimi setti che attraversano la cisti. Per  confermare  la  diagnosi potrebbe essere necessario eseguire una seconda ecografia durante la fase follicolare del ciclo  mestruale  successivo,  quando  la struttura sotto esame dovrebbe essersi ridotta di dimensioni.  Il corpo luteo di recente formazione solitamente appare come  una struttura ipoecogena con una parete irregolare  e  può  contenere alcuni echi interni corrispondenti alla parte emorragica (12). Poiché il corpo luteo si sviluppa 4-8  giorni  dopo  l’ovulazione,  esso appare come un’area iperecogena di circa 15 mm. Tuttavia, il corpo luteo varia notevolmente in dimensioni  ed in ecogenicità. L’emorragia all’interno del corpo luteo può  simulare  una  massa solida o complessa nonostante la correlazione tra  dimensioni  del follicoli e di estradiolo durante  la  fase  follicolare (13).  non  è stata dimostrata alcuna relazione tra dimensioni del corpo  luteo e livelli di progesterone durante la  fase  luteinica  del  ciclo mestruale (14).

 La presenza di liquido libero nel peritoneo (falda liquida nel Douglas) è indice di  avvenuta ovulazione,  particolarmente  se  un  follicolo  evidenziato   in precedenza risulta collassato. Tuttavia, la  quantità  di  liquido osservato nel perineo eccede significativamente  la  quantità  di liquido realmente liberata  dalla  rottura  del  follicolo. Inoltre, le donne con  cicli  anovulatori  all’ecografia  possono presentare  livelli  di  liquido  peritoneale  sovrapponibili   a quelli delle donne con cicli ovulatori. Queste ed altre  evidenze sostengono   l’ipotesi   che   il   liquido   peritoneale   derivi prevalentemente  da  secrezioni  ovariche  sotto   il   controllo ormonale e non dal liquido follicolare (15-20).

 

ECOGRAFIA DOPPLER

L’ecografia Doppler offre  la  possibilità di studiare le modalità del flusso ematico e quindi permette di identificare le variazioni funzionali. L’ecografia  transvaginale fornisce immagini di migliore risoluzione rispetto  all’ecografia transaddominale, principalmente per la migliore conservazione del fascio ultrasonico e per l’impiego di frequenze più alte. Si era ritenuto che  l’approccio  transvaginale  dell’ecografia  Doppler potesse offrire gli  stessi  vantaggi  ottenuti  con  l’ecografia tradizionale e,  infatti,  attualmente  viene  utilizzata  questa metodica.  L’uso  del  color  Doppler  transvaginale consente posizionamenti  accurati  del  volume  campione  per  la misurazione con Doppler pulsato. Mediante l’analisi Doppler della forma  del  profilo  d’onda,  è  possibile  distinguere   l’ovaio contenente il corpo luteo attivo da un ovaio inattivo. La tecnica è di semplice uso ed i  risultati  sono  subito  disponibili.  Le alterazioni vascolari possono essere generalmente  osservate  come un’area fluttuante di colore (con il tipico aspetto semilunare) e i diversi indici (indice di resistenza,  indice  di  pulsatilità, rapporto S/D, ecc.), derivati  dalla  forma  del  profilo  d’onda della velocità di flusso, forniscono una stima quantitativa della resistenza del flusso ematico. E’ noto che la compliance arteriosa dell’ovaio  cambia  durante  i normali cicli mestruali.  Durante  la  fase  follicolare, entrambe le ovaie  presentano  allo  studio  Doppler  del  flusso sanguigno, dei profili d’onda ad alta  resistenza  con  l’assenza virtuale o la minima presenza della componente diastolica. Questi segnali di alta resistenza di ovaio inattivo  permangono  durante il ciclo. Nell’ovaio attivo è presente, al contrario, una marcata componente  diastolica  e  conseguentemente segnali a bassa resistenza con l’avvicinarsi dell’ovulazione, e  particolarmente durante la formazione del corpo luteo.  L’angiogenesi  nel  corpo luteo avviene  in  condizioni  fisiologiche  durante  ogni  ciclo mestruale ed è  funzionalmente  necessaria  per  il  mantenimento delle prime fasi della gravidanza. L’impiego  del  color  Doppler transvaginale consente il semplice e  dettagliato  riconoscimento dell’ovaio attivo contenente il corpo luteo.  Il  colore costituisce una  guida  essenziale  per  l’esplorazione  mediante Doppler pulsato di  queste  vescicole  disposte  casualmente  nel tessuto ovarico. Senza il colore con il quale viene rappresentato il flusso, l’analisi di Doppler sarebbe potenzialmente inadeguata.

 Doppler nel ciclo mestruale normale: I vasi intraovarici solitamente non sono identificabili prima dell’8º-10º giorno di un  ciclo  di  28 giorni. L’indice di resistenza risulta di circa 0.54± 0.04  fino  all’avvicinarsi  dell’ovulazione.  Il declino   della   resistenza   inizia   2   giorni    prima dell’ovulazione   e    raggiunge   il   nadir   al    momento dell’ovulazione, 0.44 ± 0.04, rimanendo a questi livelli per  4-5 giorni. Successivamente, la resistenza gradualmente risale a 0.50  ±  0.04, restando  a  livelli  inferiori  rispetto  a  quelli riscontrati durante  la  prima  fase  follicolare.

In conclusione le  modificazioni  del  flusso  sanguigno ovarico che avvengono prima dell’ovulazione, sono fenomeni  complessi e non sono solo secondari all’azione del progesterone.  Tuttavia, alcune domande sono ancora senza risposta: una  vascolarizzazione inadeguata potrebbe essere responsabile di un difetto della  fase luteinica? La mancanza di un flusso adeguato potrebbe determinare l’interruzione precoce della gravidanza e  le  modificazioni  del flusso potrebbero giocare un ruolo nell’infertilità Si sono studiate le variazioni  della  compliance arteriosa dell’ovaio durante il ciclo  mestruale  della  donna  e  correlato i riscontri ecografici con i  livelli  di  ormoni circolanti. Nell’ovaio attivo con un follicolo  dominante o un corpo luteo, il PI nella  prima  fase  follicolare  (6.97 ±  2.01) è risultato significativamente più elevato rispetto  al  PI della fase tardiva  (2.36 ±  0.31), ed il PI nella fase  luteinica precoce (0.68 ±  0.09) è risultato significativamente più  basso  rispetto al PI della fase follicolare  tardiva.  Nell’ultima  parte  della fase luteinica il PI diventava significativamente superiore (0.93 ±  0.16) rispetto al PI della fase luteinica precoce. Nell’ovaio  inattivo senza un follicolo o corpo luteo non  è  stata  osservata  alcuna variazione nei valori di  PI  durante  il  ciclo  mestruale. I valori di PI dell’ovaio attivo erano correlati con i livelli di progesterone sierico ma non  con  i  livelli  di estradiolo.

Doppler del corpo luteo nelle prime fasi della gravidanza

Nel corpo luteo, durante il primo trimestre  della  gravidanza  è possibile rilevare un flusso sanguigno  a  bassissima  resistenza. E’ stato  ipotizzato  che  questo mancato evento possa contribuire alle patologie del Iº trimestre. Nelle gravidanze normali, l’RI e il PI medi  del  flusso sanguigno  del  corpo  luteo  non  sono  risultati   condizionati dall’epoca di gestazione

L’RI medio nel flusso sanguigno del corpo luteo nelle p/ti con  aborto interno o altre patologie è superiore rispetto alle donne con gravidanza  normale (p<0.01).

Flussimetria nei cicli PMA: il flusso ovarico è correlato al numero di follicoli (> 15mm) presenti in ogni ovaio stimolato.  L’indice  di  pulsatilità  dell’arteria  ovarica   e   dei   vasi intraovarici diminuisce con l’aumentare del numero di  follicoli. Recentemente è stato dimostrato che, durante i  cicli  stimolati, il  flusso  intraovarico  è  correlato  ai  livelli  sierici   di estradiolo.

Durante  la  fase  luteinica  dei cicli stimolati si formano numerosi corpi lutei il cui aspetto  è facilmente   osservabili   mediante   ecografia    transvaginale.  Utilizzando le immagini del  color  Doppler  siamo  in  grado  di identificare numerosi vasi sanguigni introno la corpo  luteo.  Lo studio Doppler di questi vasi mostra una bassissima resistenza al flusso durante i primi stadi della fase luteinica. Quando non si verifica la gravidanza,  la  ricca  vascolarizzazione  del  corpo luteo  gradualmente  scompare  e  la   sua   resistenza   aumenta progressivamente  durante  la  fase  luteinica  tardiva.  Tuttavia, in caso di gravidanza, il corpo luteo mantiene  la  sua vascolarizzazione  e  la  resistenza  al  flusso  rimane   bassa. E’ possibile identificare le donne  che  non resteranno gravide: nessuna p/te in cui  è stata ottenuta la gravidanza aveva un RI superiore a 0.5  durante la seconda metà della fase luteinica.  Tuttavia,  il  corpo luteo può  restare  riccamente  vascolarizzato  durante  la  fase luteinica  tardiva   per   altre   ragioni   (per   esempio   per iperstimolazione delle ovaie).

Bibliografia:

  1. DURFEE SM, FRATES MC. Sonographic spectrum of the corpus luteum in early pregnancy: gray-scale, color, and pulsed Doppler appearance. J Clin Ultrasound 1999;27:55-9.
  2. JAIN KA. Sonographic spectrum of hemorrhagic ovarian cysts. J Ultrasound Med 2002;21:879-86.
  3. Richard A. Jungmann and John S. Schweppe: “Mechanism of Action of Gonadotropin”. J. Biol. Chem. 1972, 247:5535-5542.Cole LA (2009). “New discoveries on the biology and detection of human chorionic gonadotropin”Reprod. Biol. Endocrinol. 7: 8.
  4. Alberto Fernández-Tejada, Paul A. Vadola, and Samuel J. Danishefsky:  ”Chemical Synthesis of the β-Subunit of Human Luteinizing (hLH) and Chorionic Gonadotropin (hCG) Glycoprotein Hormones”. J. Am. Chem. Soc., 2014, 136 (23), pp 8450–8458
  5. Gregory JJ, Finlay JL (April 1999). “Alpha-fetoprotein and beta-human chorionic gonadotropin: their clinical significance as tumour markers”. Drugs 57 (4): 463–7
  6. Lee-Huang S, Huang PL, Sun Y, Huang PL, Kung HF, Blithe DL, Chen HC (March 1999). “Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin”Proc. Natl. Acad. Sci. U.S.A. 96 (6): 2678–81.
  7. Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW.:”Mechanisms controlling the function and life span of the corpus luteum”. Physiol Rev. 2000 Jan;80(1):1-29
  8. .McCracken JA1, Custer EE, Lamsa JC: “Luteolysis: a neuroendocrine-mediated event. Physiol Rev. 1999 Apr;79(2):263-323.
  9. McCracken JA1, Custer EE, Lamsa JC, Robinson AG:The central oxytocin pulse generator: a pacemaker for luteolysis. Adv Exp Med Biol. 1995;395:133-54.
  10. Mirando MA1, Prince BC, Tysseling KA, Carnahan KG, Ludwig TE, Hoagland TA, Crain RC.: “A proposed role for oxytocin in regulation of endometrial prostaglandin F2 alpha secretion during luteolysis in swine”.Adv Exp Med Biol.1995;395:421-33.
  11. J Reprod Fertil Suppl. 1992;45:97-111.
  12. Jenkin G1: “Oxytocin and prostaglandin interactions in pregnancy and at parturition”. J Reprod Fertil Suppl. 1992;45:97-111.
  13. Hackelöer, B.J., Nitschke, S., Daume, E., Sturm, G., and Buchholz, R. Ultraschalldarstellung von Ovarveränderungen bei Gonadotropinstimulierungen. Geburtsh. u. Frauenh. 1977; 37: 185–190
  14. Hackelöer, B.J. and Robinson, H.P. Ultraschalldarstellung des wachsenden Follikels und Corpus luteum im normalen physiologischen Zyklus. Geburtsh. u. Frauenh. 1978; 38: 163–168
  15. Hackelöer, B.J., Fleming, R., Robinson, H.P., Adam, A.H., and Coutts, J.R.T. Correlation of ultrasonic and endocrinological assessment of human follicular development. Am. J. Obstet. Gynecol. 1979; 135: 122–128
  16. Strott, C.A., Yoshimi, T., Ross, G.T., and Lipsett, M.B. Ovarian physiology: Relationship between plasma LH and steroidgenesis by the follicle and corpus luteum: Effect of HCG. J. Clin. Endocrinol. Metab. 1969; 29: 1157–116
  17. Leyendecker, G., Wardlow, S., and Nocke, W. Experimental studies of the endocrine regulations during the periovulatory phase of the human menstrual cycle. Acta Endocrinol. 1972; 71: 160–17
  18. Marek, J. and Hulka, J. Luteinised unruptured follicle syndrome: A subtle cause of infertility. Fertil. Steril. 1978; 29: 270–274
  19. Nitschke-Dabelstein, S., Sturm, G., and Daume, E. New aspects in the definition of follicular development in the human ovary. J. Steroid Biochem. 1978; 9: 871
  20. Nitschke-Dabelstein, S., Hackelöer, B.J., and Sturm, G. The importance of ultrasonic monitoring of ovarian stimulating therapy. in: A comparative study of epimestrol, clomiphene, gonadotrophin and bromocryptin treated, ovulatory cycles controlled by ultrasonic examinations and assessment of endocrinological parameters as plasma LH, 17β-estradiol and progesterone. Progress in Medical Ultrasound. Excerpta Medica, Amsterdam; 198
  21. Soules MR1, Bremner WJ, Steiner RA, Clifton DK.: “Prolactin secretion and corpus luteum function in women with luteal phase deficiency”. J Clin Endocrinol Metab.1991 May;72(5):986-92.Terinde, R., Schmidt-Elmendorff, H., and Tigges, J. Ultraschallkontrollierte ovarielle Stimulation mit Gonadotropinen und nachfolgenden Zwillingsschwangerschaften. Geburtsh. u. Frauenh. 1978; 38: 208–211 Albarracin C.T., Gibor G.: “Prolactin Action on Luteal Protein Expression in the Corpus Luteum”. Endocrinology 1991;Volume 129, Issue 4
  22. Freeman M.E.: “Control of the CorpusLuteum: A Model System for Toxicology Research”. Environmental Health Perspectives- Vol. 38,pp.51-54,1981.Smith MS, McLean BK, Neill JD. Prolactin: the initial luteotropic stimulus of pseudopregnancy in the rat. Endocrinology. 1976 Jun;98(6):1370–1377. [PubMed]
  23. Gordon D. Niswender , Jennifer L. Juengel , Patrick J. Silva , M. Keith Rollyson , Eric W. McIntush: “Mechanisms Controlling the Function and Life Span of the Corpus Luteum”.Physiological Reviews. Published 1 January 2000 Vol. 80 no. 1, 1-29DOI:
  24. Gordon D. Niswender , Jennifer L. Juengel , Patrick J. Silva , M. Keith Rollyson , Eric W. McIntush: “Mechanisms Controlling the Function and Life Span of the Corpus Luteum”.Physiological ReviewsPublished 1 January 2000Vol. 80no. 1, 1-29DOI:
  25. CHANNING C. P.(1969): “Steroidogenesis and morphology of human ovarian cell types in tissue culture. J. Endocrinol. 45:297–308.
  26. CHANNING C. P.(1969): Tissue culture of equine ovarian cell types: culture methods and morphology. J. Endocrinol.43:381–390.
  27. GARRIDO C.,SIMON S.,GOSPODAROWICZ D.(1993): “Transcriptional regulation of vascular endothelial growth factor gene expression in ovarian granulosa cells”. Growth Factors8:109–117.
  28. KOOS R. D.(1995): “Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biol. Reprod.52:1426–1435.
  29. REDMER D. A.,REYNOLDS L. P.(1996) Angiogenesis in the ovary. Rev. Reprod.1:182–192.
  30. REYNOLDS L. P.,KILLILEA S.,REDMER D. A. (1992) Angiogenesis in the female reproductive system. FASEB J.6:886–892
  31. DHARMARAJAN A. M.,BRUCE N. W.,MEYER G. T.(1985) Quantitative ultrastructural characteristics relating to transport between luteal cell cytoplasm and blood in the corpus luteum of the pregnant rat. Am. J. Anat.172:87–99.
  32. SWANN R. T.,BRUCE N. W.(1987) Oxygen consumption, carbon dioxide production and progestagen secretion in the intact rat ovary of the day-16 pregnant rat. J. Reprod. Fertil.80:599–605.
  33. CRIVELLO J. F., JEFCOATE C. R. (1978): “Mechanisms of corticotropin action in rat adrenal cells. I. The effects of inhibitors of protein synthesis and of microfilament formation on corticosterone synthesis”. Biochim. Biophys. Acta 542:315–329. BROWN M. S.,GOLDSTEIN J. L. (1986): “A receptor-mediated pathway for cholesterol homeostasis”. Science 232:34–47.
  34. COOK B.,KALTENBACH C. C.,NORTON H. W.,NALBANDOV A. V. (1967) “Synthesis of progesterone in vitro by porcine corpora lutea”. Endocrinology81:573–584
  35. WATERMAN M. R. A (1995) rising StAR: an essential role in cholesterol transport. Science267:1780–1781.
  36. D Lin,T Sugawara, JF Strauss 3rd, BJ Clark, DM Stocco, P Saenger, A Rogol, WL Miller: “Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis”. Science24 March 1995: Vol. 267 no. 5205 pp. 1828-1831
  37. Douglas M. Stocco, Barbara J. Clark: “Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis”.Biochemical Pharmacology Volume 51, Issue 3, 9 February 1996, Pages 197–205
  38. COOK B.,NALBANDOV A. V. (1968): “The effect of some pituitary hormones on progesterone synthesis in vitro by the luteinized ovary of the common opossum (Didelphis marsupialis Virginiana). J. Reprod. Fertil. 15:267–275.
  39. CRIVELLO J. F.,JEFCOATE C. R. (1978): “Mechanisms of corticotropin action in rat adrenal cells. I. The effects of inhibitors of protein synthesis and of microfilament formation on corticosterone synthesis. Biochim. Biophys. Acta542:315–329.
  40. CONSTANTINO C. X.,KEYES P. L.,KOSTYO J. L. (1991): “Insulin-like growth factor-I stimulates steroidogenesis in rabbit luteal cells”. Endocrinology128:1702–1708.
  41. DEVOTO L.,KOHEN P.,CASTRO O.,VEGA M.,TRONCOSO J. L.,CHARREAU E. (1995): Multihormonal regulation of progesterone synthesis in cultured human midluteal cells”. J. Clin. Endocrinol. Metab.80:1566–1570.
  42. McARDLE C. A.,HOLTORF A.-P.(1989): “Oxytocin and progesterone release from bovine corpus luteal cells in culture: effects of insulin-like growth factor I, insulin, and prostaglandins”. Endocrinology124:1278–1286.
  43. PARMER T. G.,ROBERTS C. T. J R,LEROITH D.,ADASHI E. Y.,KHAN I.,SOLAN N.,NELSON S.,ZELBERSTEIN M.,GIBORI G.(1991) Expression, action, and steroidal regulation of insulin-like growth factor-I (IGF-I) and IGF-I receptor in the rat corpus luteum: their differential role in the two cell populations forming the corpus luteum. Endocrinology129:2924–2932.
  44. SAUERWIEN H.,MIYAMOTO A.,GUNTHER J.,MEYER H. H. D.,SCHAMS D.(1992): “Binding and action of insulin-like growth factors and insulin in bovine luteal tissue during the oestrous cycle”. J. Reprod. Fertil.96:103–115.
  45. LIEBERMANN J.,SCHAMS D.(1994): “Actions of somatotrophin on oxytocin and progesterone release from the microdialysed bovine corpus luteum in vitro. J. Endocrinol.143:243–250.
  46. ALILA H. W.,CORRADINO R. A.,HANSEL W. (1988) A comparison of the effects of cyclooxygenase prostanoids on progesterone production by small and large bovine luteal cells. Prostaglandins36:259–270.
  47. FITZ T. A.,MOCK E. J.,MAYAN M. H.,NISWENDER G. D.(1984) Interactions of prostaglandins with subpopulations of ovine luteal cells. II. Inhibitory effects of PGF and protection by PGE2. Prostaglandins28:127–138.
  48. MILVAE R. A.,HANSEL W.(1980) The effects of prostacyclin (PGI2) and 6-keto-PGF on bovine plasma progesterone and LH concentrations. Prostaglandins20:641–647.
  49. McGUIRE W. J.,JUENGEL J. L.,NISWENDER G. D.(1994) Protein kinase C second messenger system mediates the antisteroidogenic effects of prostaglandin F in the ovine corpus luteum in vivo. Biol. Reprod.51:800–806.
  50. KNICKERBOCKER J. J.,WILTBANK M. C.,NISWENDER G. D.(1988) Mechanisms of luteolysis in domestic livestock. Domest. Anim. Endocrinol.5:91–107.
  51. OLOFSSON J.,NORJAVAARA E.,SELSTAM G.(1992) Synthesis of prostaglandin F, E2 and prostacyclin in isolated corpora lutea of adult pseudopregnant rats throughout the luteal life-span. Prostaglandins Leukotrienes Essent. Fatty Acids46:151–161.
  52. TSAI S. J.,WILTBANK M. C.(1997) Prostaglandin F induces expression of prostaglandin G/H synthase-2 in the ovine corpus luteum: a potential positive feedback loop during luteolysis. Biol. Reprod.57:1016–1022.
  53. TSAI S. J.,WILTBANK M. C.(1998) Prostaglandin F regulates distinct physiological changes in early and mid-cycle bovine corpora lutea. Biol. Reprod.58:346–352.
  54. GIRSH E.,WANG W.,MAMLUK R.,ARDITI F.,FRIEDMAN A.,MILVAE R. A.,MEIDAN R.(1996) Regulation of endothelin-1 in the bovine corpus luteum: elevation by prostaglandin F2 alpha. Endocrinology137:5191–5196.
  55. OHTANI M.,KOBAYSHI S.,MIYAMOTO A.,HAYASHI K.,FUKUI Y.(1998) Real-time relationships between intraluteal and plasma concentrations of endothelin, oxytocin, and progesterone during prostaglandin F-induced luteolysis in the cow. Biol. Reprod.58:103–108.
  56. RAKUGI H.,TABUCHI Y.,NAKAMURA M.,NAGANO M.,HIGASHIMORI K.,MAKAMI H.,OGIHARA T.,SUZUKI N.(1990) Evidence for endothelin-1 release from resistance vessels of rats in response to hypoxia. Biochem. Biophys. Res. Commun.169:973–977.
  57. CAVANAGH A. C.,MORTON H.(1994) The purification of early pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur. J. Biochem.222:551–560.
  58. STOCCO D. M.,CHEN W.(1991) Presence of identical mitochondrial proteins in unstimulated constitutive steroid-producing R2C rat Leydig tumor and stimulated nonconstitutive steroid-producing MA-10 mouse Leydig tumor cells. Endocrinology128:1918–1926.
  59. MATSUYAMA S.,OHTA M.,TAKAHASHI M.(1987) The critical period in which splenectomy causes functional disorder of the ovary in adult rats. Endocrinol. Japon.34:849–855.
  60. BRÄNNSTROM M.,NORMAN R. J.(1993) Involvement of leukocytes and cytokines in the ovulatory process and corpus luteum function. Hum. Reprod.8:1762–1775.
  61. ADAMS E. C.,HERTIG A. T.(1969) Studies on the corpus luteum. I. Observation on the ultrastructure of development and regression of the luteal cells during the menstrual cycle. J. Cell Biol.41:696–715.
  62. BRENNER R. M.,RESKO J. A.,WEST N. B.(1974) Cyclic changes in oviductal morphology and residual cytoplasmic estradiol binding capacity induced by sequential estradiol-progesterone treatment of spayed Rhesus monkeys. Endocrinology95:1094–1104.
  63. PAAVOLA L. G.(1979) The corpus luteum of the guinea pig. IV. Fine structure of macrophages during pregnancy and postpartum luteolysis and the phagocytosis of luteal cells. Am. J. Anat.154:337–364.
  64. PEPPERELL J. R.,WOLCOTT C.,BEHRMAN H. R.(1992) Effects of neutrophils in rat luteal cells. Endocrinology130:1001–1008.
  65. PARKER C. W.(1991) Neutrophil mechanisms. Am. Rev. Respir. Dis.143:559–560.
  66. TSCHESHE H.,FEDROWITZ J.,MICHAELIS J.,MACARTNEY H. W.(1986) Matrix degrading proteinases from human granulocytes: type I, II, III collagenase, gelatinase and type IV collagenase. Folia Histochem. Cytobiol.61:269–273.
  67. ADAMS E. C.,HERTIG A. T.(1969) Studies on the corpus luteum. I. Observation on the ultrastructure of development and regression of the luteal cells during the menstrual cycle. J. Cell Biol.41:696–715.
  68. FAIRCHILD D. L.,PATE J. L.(1989) Interferon induction of major histocompatibility complex antigens on cultured bovine luteal cells. Biol. Reprod.40:453–457.
  69. PAAVOLA L. G.(1979) The corpus luteum of the guinea pig. IV. Fine structure of macrophages during pregnancy and postpartum luteolysis and the phagocytosis of luteal cells. Am. J. Anat.154:337–364.
  70. FAIRCLOUGH R. J.,MOORE L. G.,McGOWAN L. T.,PETERSON A. J.,SMITH J. F.,TERVIT H. R.,WATKINS W. B.(1980) Temporal relationship between plasma concentrations of 13,14-dihydro-15-keto-prostaglandin F and neurophysin I/II around luteolysis in sheep. Prostaglandins 20:199–208.
  71. SAWYER H. R.,NISWENDER K. D.,BRADEN T. D.,NISWENDER G. D.(1990) Nuclear changes in ovine luteal cells in response to PGF. Domest. Anim. Endocrinol. 7:229–238